转录组学对AMD-GWAS发现的生物学和临床应用的解释

R. Ratnapriya
{"title":"转录组学对AMD-GWAS发现的生物学和临床应用的解释","authors":"R. Ratnapriya","doi":"10.20517/jtgg.2021.54","DOIUrl":null,"url":null,"abstract":"Genome-wide association studies (GWAS) have been successful in identifying genetic risk factors for a large number of complex diseases, including age-related macular degeneration (AMD), which is a highly heritable complex disease affecting millions of elderly individuals. However, the progress of elucidating the functional relevance of genetic findings in AMD has been slow, as most risk factors are non-coding, and we have little insight into the causal genes and disease mechanisms. In the last few years, gene expression regulation is emerging as a dominant mechanism through which GWAS risk variants lead to the disease. The purpose of this review is to provide an overview of how transcriptome studies can help in identifying the genes, pathways and therapeutic targets underlying GWAS discoveries in AMD. These approaches help pave the road for mechanistic understanding of GWAS findings and drive translational advances that will lead to improved AMD management and treatment.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transcriptomics insights into interpreting AMD-GWAS discoveries for biological and clinical applications\",\"authors\":\"R. Ratnapriya\",\"doi\":\"10.20517/jtgg.2021.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genome-wide association studies (GWAS) have been successful in identifying genetic risk factors for a large number of complex diseases, including age-related macular degeneration (AMD), which is a highly heritable complex disease affecting millions of elderly individuals. However, the progress of elucidating the functional relevance of genetic findings in AMD has been slow, as most risk factors are non-coding, and we have little insight into the causal genes and disease mechanisms. In the last few years, gene expression regulation is emerging as a dominant mechanism through which GWAS risk variants lead to the disease. The purpose of this review is to provide an overview of how transcriptome studies can help in identifying the genes, pathways and therapeutic targets underlying GWAS discoveries in AMD. These approaches help pave the road for mechanistic understanding of GWAS findings and drive translational advances that will lead to improved AMD management and treatment.\",\"PeriodicalId\":73999,\"journal\":{\"name\":\"Journal of translational genetics and genomics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of translational genetics and genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jtgg.2021.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jtgg.2021.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

全基因组关联研究(GWAS)已经成功地确定了许多复杂疾病的遗传风险因素,包括年龄相关性黄斑变性(AMD),这是一种影响数百万老年人的高度遗传性复杂疾病。然而,由于大多数危险因素是非编码的,我们对致病基因和疾病机制的了解很少,阐明遗传发现在AMD中功能相关性的进展一直很缓慢。在过去的几年中,基因表达调控正在成为GWAS风险变异导致疾病的主要机制。本综述的目的是概述转录组研究如何帮助识别AMD中GWAS发现的基因、途径和治疗靶点。这些方法有助于为GWAS发现的机制理解铺平道路,并推动转化进步,从而改善AMD的管理和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomics insights into interpreting AMD-GWAS discoveries for biological and clinical applications
Genome-wide association studies (GWAS) have been successful in identifying genetic risk factors for a large number of complex diseases, including age-related macular degeneration (AMD), which is a highly heritable complex disease affecting millions of elderly individuals. However, the progress of elucidating the functional relevance of genetic findings in AMD has been slow, as most risk factors are non-coding, and we have little insight into the causal genes and disease mechanisms. In the last few years, gene expression regulation is emerging as a dominant mechanism through which GWAS risk variants lead to the disease. The purpose of this review is to provide an overview of how transcriptome studies can help in identifying the genes, pathways and therapeutic targets underlying GWAS discoveries in AMD. These approaches help pave the road for mechanistic understanding of GWAS findings and drive translational advances that will lead to improved AMD management and treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信