基于邻近度的图中链接预测方法

Ask Pub Date : 2020-01-01 DOI:10.18061/ASK.V29I1.0002
M. Bojanowski, Bartosz Chrol
{"title":"基于邻近度的图中链接预测方法","authors":"M. Bojanowski, Bartosz Chrol","doi":"10.18061/ASK.V29I1.0002","DOIUrl":null,"url":null,"abstract":"Link prediction is a problem of predicting future edges of an undirected graph based on a single snapshot of data of that graph. Vertex proximity measures are indicies giving numerical scores for every pair of vertices in a graph that can be used for predicting future edges. This short note describes an R package ‘linkprediction’ implementing 20 different vertex similarity and proximity measures from the literature. The article provides the de fi nitions of implemented measures, describes the main user-facing functions, and illustrates the use of the methods with a problem of predicting future co-authorship relations between researchers of the University of Warsaw.","PeriodicalId":33339,"journal":{"name":"Ask","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Proximity-based Methods for Link Prediction in Graphs with R package 'linkprediction'\",\"authors\":\"M. Bojanowski, Bartosz Chrol\",\"doi\":\"10.18061/ASK.V29I1.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Link prediction is a problem of predicting future edges of an undirected graph based on a single snapshot of data of that graph. Vertex proximity measures are indicies giving numerical scores for every pair of vertices in a graph that can be used for predicting future edges. This short note describes an R package ‘linkprediction’ implementing 20 different vertex similarity and proximity measures from the literature. The article provides the de fi nitions of implemented measures, describes the main user-facing functions, and illustrates the use of the methods with a problem of predicting future co-authorship relations between researchers of the University of Warsaw.\",\"PeriodicalId\":33339,\"journal\":{\"name\":\"Ask\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ask\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18061/ASK.V29I1.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ask","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18061/ASK.V29I1.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

链接预测是基于无向图的单个数据快照来预测无向图的未来边缘的问题。顶点接近度量是为图中每对顶点给出数值分数的指标,可用于预测未来的边缘。这篇短文描述了一个R包“链接预测”,实现了20种不同的顶点相似度和接近度度量。本文提供了实施措施的定义,描述了主要的面向用户的功能,并举例说明了预测华沙大学研究人员之间未来合作关系的方法的使用问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proximity-based Methods for Link Prediction in Graphs with R package 'linkprediction'
Link prediction is a problem of predicting future edges of an undirected graph based on a single snapshot of data of that graph. Vertex proximity measures are indicies giving numerical scores for every pair of vertices in a graph that can be used for predicting future edges. This short note describes an R package ‘linkprediction’ implementing 20 different vertex similarity and proximity measures from the literature. The article provides the de fi nitions of implemented measures, describes the main user-facing functions, and illustrates the use of the methods with a problem of predicting future co-authorship relations between researchers of the University of Warsaw.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ask
Ask
自引率
0.00%
发文量
0
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信