基于非表面独立离散边界元法的非水密模型数值研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
S. Cordeiro, Guilherme Henrique Teixeira, G. D. O. Daumas, F. Monteiro
{"title":"基于非表面独立离散边界元法的非水密模型数值研究","authors":"S. Cordeiro, Guilherme Henrique Teixeira, G. D. O. Daumas, F. Monteiro","doi":"10.1590/1679-78257573","DOIUrl":null,"url":null,"abstract":"It is well known that boundary integral equations are exact mathematical representations of the governing differential equations of a boundary value problem when the integrals are written over a closed-shape boundary representation (B-representation) of the domain, usually reffered to as a watertight B-representation. However, practical geometric design technics (namely, NURBS surfaces) often do not render a watertight B-representation. Non-watertight geometric models with small gaps and overlaps are often generated in the design stage of projects. Based on a proposed surface-independent discretization approach, the present study investigates how unsought gaps affect the response of boundary element models of linear elasticity problems. The developed surface-independent discretization is applied to discretize multiple-patches NURBS B-representation geometries. Linear triangular and quadrilateral elements are adopted to discretize the independent surfaces. Generalized discontinuous elements at the edges of the visible areas of the NURBS parametric spaces are detected by a Level Set function. An offset collocation strategy is adopted for the nodes at the edges of the visible part of the parametric spaces. Thus, singularities and near singularities due to collocation are avoided in the BEM equations. The influence of gaps in the convergence of the L2-norm of boundary displacement error is verified in a 3D example with an available analytical solution. A second example with available numerical solution is analyzed with a non-watertight BEM discretization for qualitative boundary field validation. Finally, a non-watertight B-representation geometry of a crane hook is analyzed. The obtained results have pointed out that, as long as the gaps (and overlaps) are small enough, BEM models built up from non-watertight geometries may produce valuable solutions for practical purposes","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigations in non-watertight models based on a surface-independent discretization boundary element method\",\"authors\":\"S. Cordeiro, Guilherme Henrique Teixeira, G. D. O. Daumas, F. Monteiro\",\"doi\":\"10.1590/1679-78257573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that boundary integral equations are exact mathematical representations of the governing differential equations of a boundary value problem when the integrals are written over a closed-shape boundary representation (B-representation) of the domain, usually reffered to as a watertight B-representation. However, practical geometric design technics (namely, NURBS surfaces) often do not render a watertight B-representation. Non-watertight geometric models with small gaps and overlaps are often generated in the design stage of projects. Based on a proposed surface-independent discretization approach, the present study investigates how unsought gaps affect the response of boundary element models of linear elasticity problems. The developed surface-independent discretization is applied to discretize multiple-patches NURBS B-representation geometries. Linear triangular and quadrilateral elements are adopted to discretize the independent surfaces. Generalized discontinuous elements at the edges of the visible areas of the NURBS parametric spaces are detected by a Level Set function. An offset collocation strategy is adopted for the nodes at the edges of the visible part of the parametric spaces. Thus, singularities and near singularities due to collocation are avoided in the BEM equations. The influence of gaps in the convergence of the L2-norm of boundary displacement error is verified in a 3D example with an available analytical solution. A second example with available numerical solution is analyzed with a non-watertight BEM discretization for qualitative boundary field validation. Finally, a non-watertight B-representation geometry of a crane hook is analyzed. The obtained results have pointed out that, as long as the gaps (and overlaps) are small enough, BEM models built up from non-watertight geometries may produce valuable solutions for practical purposes\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78257573\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigations in non-watertight models based on a surface-independent discretization boundary element method
It is well known that boundary integral equations are exact mathematical representations of the governing differential equations of a boundary value problem when the integrals are written over a closed-shape boundary representation (B-representation) of the domain, usually reffered to as a watertight B-representation. However, practical geometric design technics (namely, NURBS surfaces) often do not render a watertight B-representation. Non-watertight geometric models with small gaps and overlaps are often generated in the design stage of projects. Based on a proposed surface-independent discretization approach, the present study investigates how unsought gaps affect the response of boundary element models of linear elasticity problems. The developed surface-independent discretization is applied to discretize multiple-patches NURBS B-representation geometries. Linear triangular and quadrilateral elements are adopted to discretize the independent surfaces. Generalized discontinuous elements at the edges of the visible areas of the NURBS parametric spaces are detected by a Level Set function. An offset collocation strategy is adopted for the nodes at the edges of the visible part of the parametric spaces. Thus, singularities and near singularities due to collocation are avoided in the BEM equations. The influence of gaps in the convergence of the L2-norm of boundary displacement error is verified in a 3D example with an available analytical solution. A second example with available numerical solution is analyzed with a non-watertight BEM discretization for qualitative boundary field validation. Finally, a non-watertight B-representation geometry of a crane hook is analyzed. The obtained results have pointed out that, as long as the gaps (and overlaps) are small enough, BEM models built up from non-watertight geometries may produce valuable solutions for practical purposes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信