TLCD结构减振参数研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Maurício Vitali Mendes, Lucas Borchardt Ghedini, Rafael Neponuceno Batista, L. Pedroso
{"title":"TLCD结构减振参数研究","authors":"Maurício Vitali Mendes, Lucas Borchardt Ghedini, Rafael Neponuceno Batista, L. Pedroso","doi":"10.1590/1679-78257412","DOIUrl":null,"url":null,"abstract":"In this article, the efficiency of the tuned liquid column damper (TLCD) in reducing structural vibration is analyzed. The analysis by numerical methods and by analytical methods is adopted in the search for the ideal parameters for the liquid column. The equivalent linear model is considered for the U-shaped liquid column equation of motion with damping resulting from an orifice. Thus, variation of TLCD parameters for different loads is investigated. Initially, for the numerical study in conjunction with the analytical formulation, a sinusoidal forcing is adopted. Subsequently, the action of an earthquake through the recorded ground accelerations is considered in the case study. Optimal TLCD parameters are presented via response map for reducing the structure's maximum permanent response to harmonic excitation and for reducing the structure's rms response to seismic excitation with wide frequency and various amplitude. The variation of the TLCD parameters presented by the response map is directly related to the force acting on the structure. However, it is verified that regardless of the acting force, there is an ideal frequency range to tune the TLCD where the greatest reductions in the primary system response are found. It appears that reducing the aspect ratio of the liquid column makes this range narrower, making the damper more sensitive to parameter variations, as well as its performance. It is also observed that the increase in the attenuator mass ratio combined with the correct tuning and damping ratios present greater reductions in structural vibration. Also, the frequency ratio is reduced with the increase of the mass ratio, while the damping rate of the liquid column increases. From the ideal liquid column parameters determined by the parametric analysis, structural response reductions of approximately 60% were achieved.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of TLCD parameters for structural vibration mitigation\",\"authors\":\"Maurício Vitali Mendes, Lucas Borchardt Ghedini, Rafael Neponuceno Batista, L. Pedroso\",\"doi\":\"10.1590/1679-78257412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the efficiency of the tuned liquid column damper (TLCD) in reducing structural vibration is analyzed. The analysis by numerical methods and by analytical methods is adopted in the search for the ideal parameters for the liquid column. The equivalent linear model is considered for the U-shaped liquid column equation of motion with damping resulting from an orifice. Thus, variation of TLCD parameters for different loads is investigated. Initially, for the numerical study in conjunction with the analytical formulation, a sinusoidal forcing is adopted. Subsequently, the action of an earthquake through the recorded ground accelerations is considered in the case study. Optimal TLCD parameters are presented via response map for reducing the structure's maximum permanent response to harmonic excitation and for reducing the structure's rms response to seismic excitation with wide frequency and various amplitude. The variation of the TLCD parameters presented by the response map is directly related to the force acting on the structure. However, it is verified that regardless of the acting force, there is an ideal frequency range to tune the TLCD where the greatest reductions in the primary system response are found. It appears that reducing the aspect ratio of the liquid column makes this range narrower, making the damper more sensitive to parameter variations, as well as its performance. It is also observed that the increase in the attenuator mass ratio combined with the correct tuning and damping ratios present greater reductions in structural vibration. Also, the frequency ratio is reduced with the increase of the mass ratio, while the damping rate of the liquid column increases. From the ideal liquid column parameters determined by the parametric analysis, structural response reductions of approximately 60% were achieved.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78257412\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257412","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of TLCD parameters for structural vibration mitigation
In this article, the efficiency of the tuned liquid column damper (TLCD) in reducing structural vibration is analyzed. The analysis by numerical methods and by analytical methods is adopted in the search for the ideal parameters for the liquid column. The equivalent linear model is considered for the U-shaped liquid column equation of motion with damping resulting from an orifice. Thus, variation of TLCD parameters for different loads is investigated. Initially, for the numerical study in conjunction with the analytical formulation, a sinusoidal forcing is adopted. Subsequently, the action of an earthquake through the recorded ground accelerations is considered in the case study. Optimal TLCD parameters are presented via response map for reducing the structure's maximum permanent response to harmonic excitation and for reducing the structure's rms response to seismic excitation with wide frequency and various amplitude. The variation of the TLCD parameters presented by the response map is directly related to the force acting on the structure. However, it is verified that regardless of the acting force, there is an ideal frequency range to tune the TLCD where the greatest reductions in the primary system response are found. It appears that reducing the aspect ratio of the liquid column makes this range narrower, making the damper more sensitive to parameter variations, as well as its performance. It is also observed that the increase in the attenuator mass ratio combined with the correct tuning and damping ratios present greater reductions in structural vibration. Also, the frequency ratio is reduced with the increase of the mass ratio, while the damping rate of the liquid column increases. From the ideal liquid column parameters determined by the parametric analysis, structural response reductions of approximately 60% were achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信