基于当前双谱和卷积神经网络的电机轴承故障诊断

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Jiaojiao Ma, Lingli Jiang, Shuhui Li, Heshan Sheng, Chengxi Zhou, Xuejun Li
{"title":"基于当前双谱和卷积神经网络的电机轴承故障诊断","authors":"Jiaojiao Ma, Lingli Jiang, Shuhui Li, Heshan Sheng, Chengxi Zhou, Xuejun Li","doi":"10.1590/1679-78257364","DOIUrl":null,"url":null,"abstract":"Motor bearings are prone to different degrees of performance degradation, fatigue damage and failure undergoing complex and harsh environments. Vibration signal analysis is a mature method for diagnosing motor bearing faults, while it is not applicable for installing additional vibration sensors on many occasions. Practically, the fault of motor bearings changes the air gap flux between the rotor and stator, which leads to harmonic fluctuations in the stator current. The current signals can be used to diagnose the motor bearing faults without additional sensors. Inevitably the harmonics caused by the motor bearing faults will be coupled with the original signals. This paper combines bi-spectrum and Convolution Neural Network (CNN) to analyze the current signals of motor bearing faults. The CNN diagnosis model is trained based on the local bi-spectrum of current, and the CNN parameters are optimized. Diagnose and analyze motor bearing faults with different fault implantation methods, working conditions, fault degrees and fault locations. The diagnostic accuracy reaches more than 80%.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of Motor Bearing Based on Current Bi-Spectrum and Convolutional Neural Network\",\"authors\":\"Jiaojiao Ma, Lingli Jiang, Shuhui Li, Heshan Sheng, Chengxi Zhou, Xuejun Li\",\"doi\":\"10.1590/1679-78257364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motor bearings are prone to different degrees of performance degradation, fatigue damage and failure undergoing complex and harsh environments. Vibration signal analysis is a mature method for diagnosing motor bearing faults, while it is not applicable for installing additional vibration sensors on many occasions. Practically, the fault of motor bearings changes the air gap flux between the rotor and stator, which leads to harmonic fluctuations in the stator current. The current signals can be used to diagnose the motor bearing faults without additional sensors. Inevitably the harmonics caused by the motor bearing faults will be coupled with the original signals. This paper combines bi-spectrum and Convolution Neural Network (CNN) to analyze the current signals of motor bearing faults. The CNN diagnosis model is trained based on the local bi-spectrum of current, and the CNN parameters are optimized. Diagnose and analyze motor bearing faults with different fault implantation methods, working conditions, fault degrees and fault locations. The diagnostic accuracy reaches more than 80%.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78257364\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257364","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis of Motor Bearing Based on Current Bi-Spectrum and Convolutional Neural Network
Motor bearings are prone to different degrees of performance degradation, fatigue damage and failure undergoing complex and harsh environments. Vibration signal analysis is a mature method for diagnosing motor bearing faults, while it is not applicable for installing additional vibration sensors on many occasions. Practically, the fault of motor bearings changes the air gap flux between the rotor and stator, which leads to harmonic fluctuations in the stator current. The current signals can be used to diagnose the motor bearing faults without additional sensors. Inevitably the harmonics caused by the motor bearing faults will be coupled with the original signals. This paper combines bi-spectrum and Convolution Neural Network (CNN) to analyze the current signals of motor bearing faults. The CNN diagnosis model is trained based on the local bi-spectrum of current, and the CNN parameters are optimized. Diagnose and analyze motor bearing faults with different fault implantation methods, working conditions, fault degrees and fault locations. The diagnostic accuracy reaches more than 80%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信