{"title":"采用大变形有限元方法,将改进的摩擦模型应用于平面滑动连接","authors":"Tiago Morkis Siqueira, H. B. Coda","doi":"10.1590/1679-78257321","DOIUrl":null,"url":null,"abstract":"Friction is an important source of dissipation in dynamical systems. Properly considering it in the numerical model is fundamental to obtain stable and representative responses in structures and mechanisms. This is especially significant for the well-known Coulomb model due to discontinuity in force when stick-slip transition occurs. In this work an improved friction force model is proposed to smooth the force transition at null velocity, with an additional parameter obtained from the own system state. The improved model is employed in sliding connections of plane frames finite elements. A total Lagrangian Finite Element Method (FEM) formulation based on a positional description of the motion is employed. Using a variational principle, frictional dissipation is added to the total mechanical energy to develop the equations of motion. The resulting nonlinear equations are solved by the Newton-Raphson method accounting for the friction force update in the iterative process. Examples are presented to show the formulation effectiveness and possibilities in simulating dynamical systems that present the stick-slip effect.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved friction model applied to plane sliding connections by a large deformation FEM formulation\",\"authors\":\"Tiago Morkis Siqueira, H. B. Coda\",\"doi\":\"10.1590/1679-78257321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Friction is an important source of dissipation in dynamical systems. Properly considering it in the numerical model is fundamental to obtain stable and representative responses in structures and mechanisms. This is especially significant for the well-known Coulomb model due to discontinuity in force when stick-slip transition occurs. In this work an improved friction force model is proposed to smooth the force transition at null velocity, with an additional parameter obtained from the own system state. The improved model is employed in sliding connections of plane frames finite elements. A total Lagrangian Finite Element Method (FEM) formulation based on a positional description of the motion is employed. Using a variational principle, frictional dissipation is added to the total mechanical energy to develop the equations of motion. The resulting nonlinear equations are solved by the Newton-Raphson method accounting for the friction force update in the iterative process. Examples are presented to show the formulation effectiveness and possibilities in simulating dynamical systems that present the stick-slip effect.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78257321\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257321","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Improved friction model applied to plane sliding connections by a large deformation FEM formulation
Friction is an important source of dissipation in dynamical systems. Properly considering it in the numerical model is fundamental to obtain stable and representative responses in structures and mechanisms. This is especially significant for the well-known Coulomb model due to discontinuity in force when stick-slip transition occurs. In this work an improved friction force model is proposed to smooth the force transition at null velocity, with an additional parameter obtained from the own system state. The improved model is employed in sliding connections of plane frames finite elements. A total Lagrangian Finite Element Method (FEM) formulation based on a positional description of the motion is employed. Using a variational principle, frictional dissipation is added to the total mechanical energy to develop the equations of motion. The resulting nonlinear equations are solved by the Newton-Raphson method accounting for the friction force update in the iterative process. Examples are presented to show the formulation effectiveness and possibilities in simulating dynamical systems that present the stick-slip effect.