{"title":"不同填充墙对连续倒塌下剪力梁柱连接钢框架性能的影响研究","authors":"Mohammed Alrubaidi, S. Alhammadi","doi":"10.1590/1679-78256983","DOIUrl":null,"url":null,"abstract":"This article examined steel frames with shear beam-column connections to determine the effectiveness of different masonry infill walls under progressive collapse. This research concentrated on the shear connection, which is the most common type of steel beam-column connection in steel buildings. Furthermore, this work experimentally evaluated one-third-scale steel-framed configurations with a single shear beam-column connection and another infilled steel frame wall configuration from the literature to verify the validity of 3D finite element models developed using the program ABAQUS. Finite element models were then used to investigate 16 different kinds of steel frames with infill masonry as well as the influence of multiple frames and the number of stories. In addition, the effects of a fully infilled frame and those of a bare frame and an infilled frame with openings were compared in flexural and catenary action phases. Results revealed that the steel building’s structural strength and energy dissipation against progressive collapse are significantly improved by infill walls","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation of different infill wall effects on performance of steel frames with shear beam-column connections under progressive collapse\",\"authors\":\"Mohammed Alrubaidi, S. Alhammadi\",\"doi\":\"10.1590/1679-78256983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examined steel frames with shear beam-column connections to determine the effectiveness of different masonry infill walls under progressive collapse. This research concentrated on the shear connection, which is the most common type of steel beam-column connection in steel buildings. Furthermore, this work experimentally evaluated one-third-scale steel-framed configurations with a single shear beam-column connection and another infilled steel frame wall configuration from the literature to verify the validity of 3D finite element models developed using the program ABAQUS. Finite element models were then used to investigate 16 different kinds of steel frames with infill masonry as well as the influence of multiple frames and the number of stories. In addition, the effects of a fully infilled frame and those of a bare frame and an infilled frame with openings were compared in flexural and catenary action phases. Results revealed that the steel building’s structural strength and energy dissipation against progressive collapse are significantly improved by infill walls\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256983\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256983","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Investigation of different infill wall effects on performance of steel frames with shear beam-column connections under progressive collapse
This article examined steel frames with shear beam-column connections to determine the effectiveness of different masonry infill walls under progressive collapse. This research concentrated on the shear connection, which is the most common type of steel beam-column connection in steel buildings. Furthermore, this work experimentally evaluated one-third-scale steel-framed configurations with a single shear beam-column connection and another infilled steel frame wall configuration from the literature to verify the validity of 3D finite element models developed using the program ABAQUS. Finite element models were then used to investigate 16 different kinds of steel frames with infill masonry as well as the influence of multiple frames and the number of stories. In addition, the effects of a fully infilled frame and those of a bare frame and an infilled frame with openings were compared in flexural and catenary action phases. Results revealed that the steel building’s structural strength and energy dissipation against progressive collapse are significantly improved by infill walls