不同角度下EFP战斗部装药破坏规律的数值模拟与实验研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Kun Zhang, C. Zhao, C. Ji, Shaoguang Zhang, X. Wang, Tao Jiang, Gang Wu
{"title":"不同角度下EFP战斗部装药破坏规律的数值模拟与实验研究","authors":"Kun Zhang, C. Zhao, C. Ji, Shaoguang Zhang, X. Wang, Tao Jiang, Gang Wu","doi":"10.1590/1679-78256910","DOIUrl":null,"url":null,"abstract":"In this paper, LS-dyna software was used to simulate the charging process of cylindrical shell when EFP has different angles, and some interesting phenomena and laws were found. Cylindrical elastic wave σ r was generated when the cylindrical shell was impacted by EFP. The cylindrical elastic wave σ r was correlated with the time required for the cylindrical shell charge to be successfully detonated. When the EFP warhead penetration Angle θ ranges from 0° to 10°, the σ r increases linearly with (cos θ ) -1/2 . With the increase of θ, the tangential velocity v y had an obvious effect on the impact of EFP on the cylindrical shell, and the linear relationship between the elastic wave σ r and (cos θ ) -1/2 does not change. When the θ was greater than 45°, EFP could not successfully impact and detonate the cylindrical shell charge. The EFP velocity was measured by velocity measurement method with an error of 1.3%. The experimental results have strong similarity with the simulation results, indicating that the parameters of the numerical simulation model have good reliability.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and experimental study of the damage law of EFP warhead charging of cylindrical shells under different angles\",\"authors\":\"Kun Zhang, C. Zhao, C. Ji, Shaoguang Zhang, X. Wang, Tao Jiang, Gang Wu\",\"doi\":\"10.1590/1679-78256910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, LS-dyna software was used to simulate the charging process of cylindrical shell when EFP has different angles, and some interesting phenomena and laws were found. Cylindrical elastic wave σ r was generated when the cylindrical shell was impacted by EFP. The cylindrical elastic wave σ r was correlated with the time required for the cylindrical shell charge to be successfully detonated. When the EFP warhead penetration Angle θ ranges from 0° to 10°, the σ r increases linearly with (cos θ ) -1/2 . With the increase of θ, the tangential velocity v y had an obvious effect on the impact of EFP on the cylindrical shell, and the linear relationship between the elastic wave σ r and (cos θ ) -1/2 does not change. When the θ was greater than 45°, EFP could not successfully impact and detonate the cylindrical shell charge. The EFP velocity was measured by velocity measurement method with an error of 1.3%. The experimental results have strong similarity with the simulation results, indicating that the parameters of the numerical simulation model have good reliability.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256910\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256910","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文利用LS-dyna软件对不同角度EFP下圆柱壳的充装过程进行了数值模拟,发现了一些有趣的现象和规律。圆柱壳受EFP冲击时产生圆柱弹性波σ r。圆柱弹性波σ r与圆柱壳装药成功引爆所需的时间相关。当EFP战斗部侵彻角θ在0 ~ 10°范围内时,σ r随(cos θ) -1/2线性增加。随着θ的增大,切向速度v y对EFP对圆柱壳的冲击有明显的影响,弹性波σ r与(cos θ) -1/2之间的线性关系不变。当θ大于45°时,EFP不能成功撞击和起爆圆柱装药。采用测速法测量EFP速度,误差为1.3%。实验结果与仿真结果具有较强的相似性,表明数值模拟模型参数具有较好的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation and experimental study of the damage law of EFP warhead charging of cylindrical shells under different angles
In this paper, LS-dyna software was used to simulate the charging process of cylindrical shell when EFP has different angles, and some interesting phenomena and laws were found. Cylindrical elastic wave σ r was generated when the cylindrical shell was impacted by EFP. The cylindrical elastic wave σ r was correlated with the time required for the cylindrical shell charge to be successfully detonated. When the EFP warhead penetration Angle θ ranges from 0° to 10°, the σ r increases linearly with (cos θ ) -1/2 . With the increase of θ, the tangential velocity v y had an obvious effect on the impact of EFP on the cylindrical shell, and the linear relationship between the elastic wave σ r and (cos θ ) -1/2 does not change. When the θ was greater than 45°, EFP could not successfully impact and detonate the cylindrical shell charge. The EFP velocity was measured by velocity measurement method with an error of 1.3%. The experimental results have strong similarity with the simulation results, indicating that the parameters of the numerical simulation model have good reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信