利用机器学习技术预测粉煤灰、偏高岭土和硅灰混凝土的抗压强度

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Majd, Ali Al-Saraireh
{"title":"利用机器学习技术预测粉煤灰、偏高岭土和硅灰混凝土的抗压强度","authors":"Majd, Ali Al-Saraireh","doi":"10.1590/1679-78257022","DOIUrl":null,"url":null,"abstract":"The compressive strength (CS) is the most important parameter in the design codes of reinforced concrete structures. The development of simple mathematical equations for the prediction of CS of concrete can have many practical advantages such as it save cost and time in experiments needed for suitable design data. Due to environmental concerns with the production of cement, different supplementary cementitious materials are often used as partial replacements for cement such as fly ash (FA), metakaolin (MK), and silica fume (SF). However, little work has been done for developing simple mathematical equations for the prediction of CS with FA, MK and SF by using the M5P algorithm. Moreover, the M5P algorithm is not compared with other modelling techniques such as linear regression analysis, gene expression programming (GEP) and response surface methodology. It is established that, for concrete with FA and SF, M5P showed superior prediction capability as compared with other modelling techniques, however, GEP gave the best performance for concrete with MK: CS decrease by increasing FA content, while it increases by increasing MK and SF content.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting compressive strength of concrete with fly ash, metakaolin and silica fume by using machine learning techniques\",\"authors\":\"Majd, Ali Al-Saraireh\",\"doi\":\"10.1590/1679-78257022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compressive strength (CS) is the most important parameter in the design codes of reinforced concrete structures. The development of simple mathematical equations for the prediction of CS of concrete can have many practical advantages such as it save cost and time in experiments needed for suitable design data. Due to environmental concerns with the production of cement, different supplementary cementitious materials are often used as partial replacements for cement such as fly ash (FA), metakaolin (MK), and silica fume (SF). However, little work has been done for developing simple mathematical equations for the prediction of CS with FA, MK and SF by using the M5P algorithm. Moreover, the M5P algorithm is not compared with other modelling techniques such as linear regression analysis, gene expression programming (GEP) and response surface methodology. It is established that, for concrete with FA and SF, M5P showed superior prediction capability as compared with other modelling techniques, however, GEP gave the best performance for concrete with MK: CS decrease by increasing FA content, while it increases by increasing MK and SF content.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78257022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting compressive strength of concrete with fly ash, metakaolin and silica fume by using machine learning techniques
The compressive strength (CS) is the most important parameter in the design codes of reinforced concrete structures. The development of simple mathematical equations for the prediction of CS of concrete can have many practical advantages such as it save cost and time in experiments needed for suitable design data. Due to environmental concerns with the production of cement, different supplementary cementitious materials are often used as partial replacements for cement such as fly ash (FA), metakaolin (MK), and silica fume (SF). However, little work has been done for developing simple mathematical equations for the prediction of CS with FA, MK and SF by using the M5P algorithm. Moreover, the M5P algorithm is not compared with other modelling techniques such as linear regression analysis, gene expression programming (GEP) and response surface methodology. It is established that, for concrete with FA and SF, M5P showed superior prediction capability as compared with other modelling techniques, however, GEP gave the best performance for concrete with MK: CS decrease by increasing FA content, while it increases by increasing MK and SF content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信