Long Zhang, Xin Wang, Yuting Wang, Juan Gu, C. Ji, Gang Wu, Liangyu Cheng
{"title":"高硬度聚脲涂层钢板承受冲击波和破片的联合载荷","authors":"Long Zhang, Xin Wang, Yuting Wang, Juan Gu, C. Ji, Gang Wu, Liangyu Cheng","doi":"10.1590/1679-78256882","DOIUrl":null,"url":null,"abstract":"To investigate the effect of polyurea on the protective performance of a steel target plate under the combination of shock wave and fragments, the failure characteristics, damage process and micro mechanism of the polyurea coated steel plates with different coating methods under the combination of explosion shock waves and fragments were analyzed through experiments and numerical simulations. The results showed that single-sided coatings aggravated the damage of target plate when the coating thickness was 2 mm. While the polyurea thickness greater than 4 mm could significantly reduce the damage degree of the steel plate. When the polyurea was coated on the double sides, it would aggravate the damage, no matter how thick the polyurea was. Through microscopic research, it was found that the front coated polyurea was severely ablated by detonation products, which greatly reduce its energy absorption efficiency. The polyurea coated on the back underwent tensile fracture under the influence of tensile stress wave. The breaking of intramolecular hydrogen bond of polyurea was the key to the energy absorption of polyurea.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"High-hardness polyurea coated steel plates subjected to combined loadings of shock wave and fragments\",\"authors\":\"Long Zhang, Xin Wang, Yuting Wang, Juan Gu, C. Ji, Gang Wu, Liangyu Cheng\",\"doi\":\"10.1590/1679-78256882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the effect of polyurea on the protective performance of a steel target plate under the combination of shock wave and fragments, the failure characteristics, damage process and micro mechanism of the polyurea coated steel plates with different coating methods under the combination of explosion shock waves and fragments were analyzed through experiments and numerical simulations. The results showed that single-sided coatings aggravated the damage of target plate when the coating thickness was 2 mm. While the polyurea thickness greater than 4 mm could significantly reduce the damage degree of the steel plate. When the polyurea was coated on the double sides, it would aggravate the damage, no matter how thick the polyurea was. Through microscopic research, it was found that the front coated polyurea was severely ablated by detonation products, which greatly reduce its energy absorption efficiency. The polyurea coated on the back underwent tensile fracture under the influence of tensile stress wave. The breaking of intramolecular hydrogen bond of polyurea was the key to the energy absorption of polyurea.\",\"PeriodicalId\":18192,\"journal\":{\"name\":\"Latin American Journal of Solids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Latin American Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1590/1679-78256882\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256882","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
High-hardness polyurea coated steel plates subjected to combined loadings of shock wave and fragments
To investigate the effect of polyurea on the protective performance of a steel target plate under the combination of shock wave and fragments, the failure characteristics, damage process and micro mechanism of the polyurea coated steel plates with different coating methods under the combination of explosion shock waves and fragments were analyzed through experiments and numerical simulations. The results showed that single-sided coatings aggravated the damage of target plate when the coating thickness was 2 mm. While the polyurea thickness greater than 4 mm could significantly reduce the damage degree of the steel plate. When the polyurea was coated on the double sides, it would aggravate the damage, no matter how thick the polyurea was. Through microscopic research, it was found that the front coated polyurea was severely ablated by detonation products, which greatly reduce its energy absorption efficiency. The polyurea coated on the back underwent tensile fracture under the influence of tensile stress wave. The breaking of intramolecular hydrogen bond of polyurea was the key to the energy absorption of polyurea.