{"title":"全尺寸铝板张拉整体结构设计","authors":"Heather Gathman, Ann C. Sychterz","doi":"10.20898/j.iass.2023.003","DOIUrl":null,"url":null,"abstract":"Tensegrity structures are typically composed of bars and cables held together in a state of self-stress. This introduces a challenge regarding the practical use of tensegrity structures, as many structures in civil engineering, such as bridge decks and roof coverings, require a surface element to be integrated into the structure. This paper describes the design development and analysis of a full-scale aluminum plate tensegrity canopy structure, which introduces a plate as a third element type. The primary reason for the plate tensegrity structure as a canopy is its high strength-to-weight ratio while providing a surface. This paper proposes an analysis method for plate tensegrity structures using dynamic relaxation, a static solution of form finding. To employ dynamic relaxation, each plate is transformed into an equivalent framework of 5 nodes and 8 bars, which significantly increases the computational efficiency of the analysis method. In addition to static analysis, a dynamic characterization is performed to ensure resistance to vibrations induced by wind and seismic activity. Results indicate that the aluminum plate tensegrity structure meets current civil engineering criteria for strength and serviceability and that the eigenfrequencies are sufficiently high to be beyond the risk of resonance for wind and seismic activity.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Full-Scale Aluminum Plate Tensegrity Structure\",\"authors\":\"Heather Gathman, Ann C. Sychterz\",\"doi\":\"10.20898/j.iass.2023.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensegrity structures are typically composed of bars and cables held together in a state of self-stress. This introduces a challenge regarding the practical use of tensegrity structures, as many structures in civil engineering, such as bridge decks and roof coverings, require a surface element to be integrated into the structure. This paper describes the design development and analysis of a full-scale aluminum plate tensegrity canopy structure, which introduces a plate as a third element type. The primary reason for the plate tensegrity structure as a canopy is its high strength-to-weight ratio while providing a surface. This paper proposes an analysis method for plate tensegrity structures using dynamic relaxation, a static solution of form finding. To employ dynamic relaxation, each plate is transformed into an equivalent framework of 5 nodes and 8 bars, which significantly increases the computational efficiency of the analysis method. In addition to static analysis, a dynamic characterization is performed to ensure resistance to vibrations induced by wind and seismic activity. Results indicate that the aluminum plate tensegrity structure meets current civil engineering criteria for strength and serviceability and that the eigenfrequencies are sufficiently high to be beyond the risk of resonance for wind and seismic activity.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2023.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2023.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Design of a Full-Scale Aluminum Plate Tensegrity Structure
Tensegrity structures are typically composed of bars and cables held together in a state of self-stress. This introduces a challenge regarding the practical use of tensegrity structures, as many structures in civil engineering, such as bridge decks and roof coverings, require a surface element to be integrated into the structure. This paper describes the design development and analysis of a full-scale aluminum plate tensegrity canopy structure, which introduces a plate as a third element type. The primary reason for the plate tensegrity structure as a canopy is its high strength-to-weight ratio while providing a surface. This paper proposes an analysis method for plate tensegrity structures using dynamic relaxation, a static solution of form finding. To employ dynamic relaxation, each plate is transformed into an equivalent framework of 5 nodes and 8 bars, which significantly increases the computational efficiency of the analysis method. In addition to static analysis, a dynamic characterization is performed to ensure resistance to vibrations induced by wind and seismic activity. Results indicate that the aluminum plate tensegrity structure meets current civil engineering criteria for strength and serviceability and that the eigenfrequencies are sufficiently high to be beyond the risk of resonance for wind and seismic activity.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.