{"title":"脑卒中后康复的实验与临床方法","authors":"M. Brainin, N. Bornstein","doi":"10.17925/ENR.2015.10.01.65","DOIUrl":null,"url":null,"abstract":"The development of effective treatments that aid recovery after stroke has been hampered in recent decades by a lack of knowledge regarding stroke complexity and the processes involved in neurological repair. Many stroke treatments tested so far have been monomodal, targeting only one neurobiological process whereas multimodal treatments are more likely to address the complex processes of stroke recovery. Understanding of stroke recovery, however, is increasing using imaging techniques, especially positron emission tomography (PET). This reveals features such as the tissue at risk in the peri-infarct area, which can be functionally restored if treatment is initiated rapidly. Understanding of stroke risk is also improving with the use of biomarkers. A promising approach to stroke therapy is non-invasive brain stimulation (NIBS), which can precisely target specific functional areas of the cortex. Clinical studies indicate that NIBS provides improvements in motor functions and aphasia but more supporting evidence is needed. When treating stroke it is critically important to take account of co-morbidities, such as diabetes and hypertension, since these have profound effects on outcomes. The provision of adequate rehabilitation soon after stroke is critical for optimal recovery and should include drug therapy. Such interventions at local treatment centres, however, are often under-resourced. Current developments are leading to a better understanding of pathophysiology and improved awareness of risks and treatments should, in future, also improve rehabilitation and hence benefit outcomes following a stroke.","PeriodicalId":12047,"journal":{"name":"European neurological review","volume":"10 1","pages":"65"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental and Clinical Approaches to Recovery after Stroke\",\"authors\":\"M. Brainin, N. Bornstein\",\"doi\":\"10.17925/ENR.2015.10.01.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of effective treatments that aid recovery after stroke has been hampered in recent decades by a lack of knowledge regarding stroke complexity and the processes involved in neurological repair. Many stroke treatments tested so far have been monomodal, targeting only one neurobiological process whereas multimodal treatments are more likely to address the complex processes of stroke recovery. Understanding of stroke recovery, however, is increasing using imaging techniques, especially positron emission tomography (PET). This reveals features such as the tissue at risk in the peri-infarct area, which can be functionally restored if treatment is initiated rapidly. Understanding of stroke risk is also improving with the use of biomarkers. A promising approach to stroke therapy is non-invasive brain stimulation (NIBS), which can precisely target specific functional areas of the cortex. Clinical studies indicate that NIBS provides improvements in motor functions and aphasia but more supporting evidence is needed. When treating stroke it is critically important to take account of co-morbidities, such as diabetes and hypertension, since these have profound effects on outcomes. The provision of adequate rehabilitation soon after stroke is critical for optimal recovery and should include drug therapy. Such interventions at local treatment centres, however, are often under-resourced. Current developments are leading to a better understanding of pathophysiology and improved awareness of risks and treatments should, in future, also improve rehabilitation and hence benefit outcomes following a stroke.\",\"PeriodicalId\":12047,\"journal\":{\"name\":\"European neurological review\",\"volume\":\"10 1\",\"pages\":\"65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European neurological review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17925/ENR.2015.10.01.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European neurological review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17925/ENR.2015.10.01.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Experimental and Clinical Approaches to Recovery after Stroke
The development of effective treatments that aid recovery after stroke has been hampered in recent decades by a lack of knowledge regarding stroke complexity and the processes involved in neurological repair. Many stroke treatments tested so far have been monomodal, targeting only one neurobiological process whereas multimodal treatments are more likely to address the complex processes of stroke recovery. Understanding of stroke recovery, however, is increasing using imaging techniques, especially positron emission tomography (PET). This reveals features such as the tissue at risk in the peri-infarct area, which can be functionally restored if treatment is initiated rapidly. Understanding of stroke risk is also improving with the use of biomarkers. A promising approach to stroke therapy is non-invasive brain stimulation (NIBS), which can precisely target specific functional areas of the cortex. Clinical studies indicate that NIBS provides improvements in motor functions and aphasia but more supporting evidence is needed. When treating stroke it is critically important to take account of co-morbidities, such as diabetes and hypertension, since these have profound effects on outcomes. The provision of adequate rehabilitation soon after stroke is critical for optimal recovery and should include drug therapy. Such interventions at local treatment centres, however, are often under-resourced. Current developments are leading to a better understanding of pathophysiology and improved awareness of risks and treatments should, in future, also improve rehabilitation and hence benefit outcomes following a stroke.