{"title":"分数扩散系统中的随机前传播","authors":"A. Mentrelli, G. Pagnini","doi":"10.1685/JOURNAL.CAIM.504","DOIUrl":null,"url":null,"abstract":"Modelling the propagation of interfaces is of interest in several fields of applied sciences, such as those involving chemical reactions where the reacting interface separates two different compounds. When the front propagation occurs in systems characterized by an underlying random motion, the front gets a random character and a tracking method for fronts with a random motion is desired. The Level Set Method, which is a successful front tracking technique widely used for interfaces with deterministic motion, is here randomized assuming that the motion of the interface is characterized by a random diffusive process. In particular, here we consider the case of a motion governed by the time-fractional diffusion equation, leading to a probability density function for the interface particle displacement given by the M-Wright/Mainardi function. Some numerical results are shown and discussed.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Random front propagation in fractional diffusive systems\",\"authors\":\"A. Mentrelli, G. Pagnini\",\"doi\":\"10.1685/JOURNAL.CAIM.504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling the propagation of interfaces is of interest in several fields of applied sciences, such as those involving chemical reactions where the reacting interface separates two different compounds. When the front propagation occurs in systems characterized by an underlying random motion, the front gets a random character and a tracking method for fronts with a random motion is desired. The Level Set Method, which is a successful front tracking technique widely used for interfaces with deterministic motion, is here randomized assuming that the motion of the interface is characterized by a random diffusive process. In particular, here we consider the case of a motion governed by the time-fractional diffusion equation, leading to a probability density function for the interface particle displacement given by the M-Wright/Mainardi function. Some numerical results are shown and discussed.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1685/JOURNAL.CAIM.504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1685/JOURNAL.CAIM.504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Random front propagation in fractional diffusive systems
Modelling the propagation of interfaces is of interest in several fields of applied sciences, such as those involving chemical reactions where the reacting interface separates two different compounds. When the front propagation occurs in systems characterized by an underlying random motion, the front gets a random character and a tracking method for fronts with a random motion is desired. The Level Set Method, which is a successful front tracking technique widely used for interfaces with deterministic motion, is here randomized assuming that the motion of the interface is characterized by a random diffusive process. In particular, here we consider the case of a motion governed by the time-fractional diffusion equation, leading to a probability density function for the interface particle displacement given by the M-Wright/Mainardi function. Some numerical results are shown and discussed.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.