普通豆系籽粒产量间接选择中的环境变异

IF 2.6 3区 农林科学 Q1 Agricultural and Biological Sciences
N. D. Ribeiro, S. M. Maziero
{"title":"普通豆系籽粒产量间接选择中的环境变异","authors":"N. D. Ribeiro, S. M. Maziero","doi":"10.1590/1678-992x-2022-0082","DOIUrl":null,"url":null,"abstract":": An approach to the number of experiments that should be used in correlation analyses aimed at increasing efficiency in indirect selection for grain yield is unprecedented for common bean ( Phaseolus vulgaris L.). We hypothesize that trait correlation estimates vary in response to the growing environment. This study was undertaken to investigate the correlations between plant architecture and yield traits in common bean lines and to determine the minimum number of experiments required by Pearson’s linear correlation analysis to increase efficiency in indirect selection for grain yield. Seventeen common bean genotypes were evaluated for 17 agronomic traits in four experiments. Pearson’s linear correlation analyses were carried out using data from individual experiments and different combinations of growing seasons and years. Ten out of the 17 agronomic traits showed a significant genotype × environment interaction effect, meaning that common bean genotypes exhibited variation for most of the traits evaluated in different growing seasons and years, which resulted in changes in the correlation estimates between these traits. Pearson’s linear correlation estimates obtained between plant architecture and yield traits varied in significance, magnitude, and sign when data from individual experiments and combinations of growing seasons and years were considered. The number of grains per pod is the most promising agronomic trait used in indirect selection for grain yield in common bean lines. Data from at least three experiments should be used in Pearson’s linear correlation analysis to achieve greater efficiency in indirect selection for grain yield in common bean lines.","PeriodicalId":49559,"journal":{"name":"Scientia Agricola","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental variability in indirect selection for grain yield in common bean lines\",\"authors\":\"N. D. Ribeiro, S. M. Maziero\",\"doi\":\"10.1590/1678-992x-2022-0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": An approach to the number of experiments that should be used in correlation analyses aimed at increasing efficiency in indirect selection for grain yield is unprecedented for common bean ( Phaseolus vulgaris L.). We hypothesize that trait correlation estimates vary in response to the growing environment. This study was undertaken to investigate the correlations between plant architecture and yield traits in common bean lines and to determine the minimum number of experiments required by Pearson’s linear correlation analysis to increase efficiency in indirect selection for grain yield. Seventeen common bean genotypes were evaluated for 17 agronomic traits in four experiments. Pearson’s linear correlation analyses were carried out using data from individual experiments and different combinations of growing seasons and years. Ten out of the 17 agronomic traits showed a significant genotype × environment interaction effect, meaning that common bean genotypes exhibited variation for most of the traits evaluated in different growing seasons and years, which resulted in changes in the correlation estimates between these traits. Pearson’s linear correlation estimates obtained between plant architecture and yield traits varied in significance, magnitude, and sign when data from individual experiments and combinations of growing seasons and years were considered. The number of grains per pod is the most promising agronomic trait used in indirect selection for grain yield in common bean lines. Data from at least three experiments should be used in Pearson’s linear correlation analysis to achieve greater efficiency in indirect selection for grain yield in common bean lines.\",\"PeriodicalId\":49559,\"journal\":{\"name\":\"Scientia Agricola\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientia Agricola\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1590/1678-992x-2022-0082\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Agricola","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1678-992x-2022-0082","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

为提高普通豆籽粒产量间接选择的效率,对相关分析应采用的试验数进行分析的方法是前所未有的。我们假设性状相关性估计随着生长环境的变化而变化。本研究旨在探讨普通豆系植株结构与产量性状之间的相关性,并确定皮尔逊线性相关分析所需的最小试验数,以提高间接选择粮食产量的效率。通过4个试验,对17个普通豆类基因型的17个农艺性状进行了评价。Pearson’s线性相关分析使用来自单个实验和不同生长季节和年份组合的数据进行。17个农艺性状中有10个表现出显著的基因型×环境互作效应,即在不同的生长季节和年份中,普通豆的大多数性状的基因型表现出差异,导致这些性状之间的相关估计值发生变化。当考虑到单个实验数据以及生长季节和年份的组合时,植物结构与产量性状之间的Pearson线性相关估计在显著性、幅度和符号上都有所不同。每荚粒数是普通豆系籽粒产量间接选择中最有前途的农艺性状。皮尔逊线性相关分析应至少使用三个试验的数据,以提高普通豆系籽粒产量间接选择的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Environmental variability in indirect selection for grain yield in common bean lines
: An approach to the number of experiments that should be used in correlation analyses aimed at increasing efficiency in indirect selection for grain yield is unprecedented for common bean ( Phaseolus vulgaris L.). We hypothesize that trait correlation estimates vary in response to the growing environment. This study was undertaken to investigate the correlations between plant architecture and yield traits in common bean lines and to determine the minimum number of experiments required by Pearson’s linear correlation analysis to increase efficiency in indirect selection for grain yield. Seventeen common bean genotypes were evaluated for 17 agronomic traits in four experiments. Pearson’s linear correlation analyses were carried out using data from individual experiments and different combinations of growing seasons and years. Ten out of the 17 agronomic traits showed a significant genotype × environment interaction effect, meaning that common bean genotypes exhibited variation for most of the traits evaluated in different growing seasons and years, which resulted in changes in the correlation estimates between these traits. Pearson’s linear correlation estimates obtained between plant architecture and yield traits varied in significance, magnitude, and sign when data from individual experiments and combinations of growing seasons and years were considered. The number of grains per pod is the most promising agronomic trait used in indirect selection for grain yield in common bean lines. Data from at least three experiments should be used in Pearson’s linear correlation analysis to achieve greater efficiency in indirect selection for grain yield in common bean lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientia Agricola
Scientia Agricola 农林科学-农业综合
CiteScore
5.10
自引率
3.80%
发文量
78
审稿时长
18-36 weeks
期刊介绍: Scientia Agricola is a journal of the University of São Paulo edited at the Luiz de Queiroz campus in Piracicaba, a city in São Paulo state, southeastern Brazil. Scientia Agricola publishes original articles which contribute to the advancement of the agricultural, environmental and biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信