{"title":"图的bean函数的递归公式","authors":"Kengo Enami, Seiya Negami","doi":"10.20429/tag.2020.070103","DOIUrl":null,"url":null,"abstract":"In this paper, we regard each edge of a connected graph G as a line segment having a unit length, and focus on not only the “vertices” but also any “point” lying along such a line segment. So we can define the distance between two points on G as the length of a shortest curve joining them along G . The beans function B G ( x ) of a connected graph G is defined as the maximum number of points on G such that any pair of points have distance at least x > 0. We shall show a recursive formula for B G ( x ) which enables us to determine the value of B G ( x ) for all x ≤ 1 by evaluating it only for 1 / 2 < x ≤ 1. As applications of this recursive formula, we shall propose an algorithm for computing B G ( x ) for a given value of x ≤ 1, and determine the beans functions of the complete graphs K n .","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recursive Formulas for Beans Functions of Graphs\",\"authors\":\"Kengo Enami, Seiya Negami\",\"doi\":\"10.20429/tag.2020.070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we regard each edge of a connected graph G as a line segment having a unit length, and focus on not only the “vertices” but also any “point” lying along such a line segment. So we can define the distance between two points on G as the length of a shortest curve joining them along G . The beans function B G ( x ) of a connected graph G is defined as the maximum number of points on G such that any pair of points have distance at least x > 0. We shall show a recursive formula for B G ( x ) which enables us to determine the value of B G ( x ) for all x ≤ 1 by evaluating it only for 1 / 2 < x ≤ 1. As applications of this recursive formula, we shall propose an algorithm for computing B G ( x ) for a given value of x ≤ 1, and determine the beans functions of the complete graphs K n .\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2020.070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2020.070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
摘要
本文将连通图G的每条边视为一个单位长度的线段,不仅关注“顶点”,而且关注沿此线段的任何“点”。所以我们可以把G上两点之间的距离定义为G上连接两点的最短曲线的长度。连通图G的bean函数B G (x)定义为G上的最大点数,使得任何点对的距离至少为x >0 0。我们将给出一个G (x)的递归公式,它使我们能够通过仅在1 / 2 < x≤1时求值来确定G (x)在所有x≤1时的值。作为这个递归公式的应用,我们将提出一种计算给定值x≤1时的B G (x)的算法,并确定完全图K n的bean函数。
In this paper, we regard each edge of a connected graph G as a line segment having a unit length, and focus on not only the “vertices” but also any “point” lying along such a line segment. So we can define the distance between two points on G as the length of a shortest curve joining them along G . The beans function B G ( x ) of a connected graph G is defined as the maximum number of points on G such that any pair of points have distance at least x > 0. We shall show a recursive formula for B G ( x ) which enables us to determine the value of B G ( x ) for all x ≤ 1 by evaluating it only for 1 / 2 < x ≤ 1. As applications of this recursive formula, we shall propose an algorithm for computing B G ( x ) for a given value of x ≤ 1, and determine the beans functions of the complete graphs K n .