交替群图的条件强匹配排除

Q4 Mathematics
Mohamad Abdallah, E. Cheng
{"title":"交替群图的条件强匹配排除","authors":"Mohamad Abdallah, E. Cheng","doi":"10.20429/tag.2019.060205","DOIUrl":null,"url":null,"abstract":"The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Conditional Strong Matching Preclusion of the Alternating Group Graph\",\"authors\":\"Mohamad Abdallah, E. Cheng\",\"doi\":\"10.20429/tag.2019.060205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2019.060205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2019.060205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

图的强匹配排除数是图的顶点和边的最小数量,删除这些顶点和边会导致图既没有完美匹配,也没有几乎完美匹配。Park和Ihm提出了在故障不产生孤立顶点的情况下的强匹配排除问题。本文给出了n维交替群图AGn的条件强匹配排除数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Strong Matching Preclusion of the Alternating Group Graph
The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost-perfect matchings. Park and Ihm introduced the problem of strong matching preclusion under the condition that no isolated vertex is created as a result of faults. In this paper, we find the conditional strong matching preclusion number for the n-dimensional alternating group graph AGn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信