{"title":"强制双连通的图形度序列:决策算法和枚举结果","authors":"Kai Wang","doi":"10.20429/tag.2019.060204","DOIUrl":null,"url":null,"abstract":"We present an algorithm to test whether a given graphical degree sequence is forcibly biconnected. The worst case time complexity of the algorithm is shown to be exponential but it is still much better than the previous basic algorithm for this problem. We show through experimental evaluations that the algorithm is efficient on average. We also adapt the classic algorithm of Ruskey et al. and that of Barnes and Savage to obtain some enumerative results about forcibly biconnected graphical degree sequences of given length n and forcibly biconnected graphical partitions of given even integer n . Based on these enumerative results we make some conjectures such as: when n is large, (1) the proportion of forcibly biconnected graphical degree sequences of length n among all zero-free graphical degree sequences of length n is asymptotically a constant C (0 < C < 1); (2) the proportion of forcibly biconnected graphical partitions of even n among all forcibly connected graphical partitions of n is asymptotically 0.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Forcibly-biconnected Graphical Degree Sequences: Decision Algorithms and Enumerative Results\",\"authors\":\"Kai Wang\",\"doi\":\"10.20429/tag.2019.060204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm to test whether a given graphical degree sequence is forcibly biconnected. The worst case time complexity of the algorithm is shown to be exponential but it is still much better than the previous basic algorithm for this problem. We show through experimental evaluations that the algorithm is efficient on average. We also adapt the classic algorithm of Ruskey et al. and that of Barnes and Savage to obtain some enumerative results about forcibly biconnected graphical degree sequences of given length n and forcibly biconnected graphical partitions of given even integer n . Based on these enumerative results we make some conjectures such as: when n is large, (1) the proportion of forcibly biconnected graphical degree sequences of length n among all zero-free graphical degree sequences of length n is asymptotically a constant C (0 < C < 1); (2) the proportion of forcibly biconnected graphical partitions of even n among all forcibly connected graphical partitions of n is asymptotically 0.\",\"PeriodicalId\":37096,\"journal\":{\"name\":\"Theory and Applications of Graphs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Applications of Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20429/tag.2019.060204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2019.060204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
摘要
提出了一种检验给定图形度序列是否强制双连通的算法。在最坏情况下,该算法的时间复杂度为指数级,但仍然比以前的基本算法好得多。实验结果表明,该算法总体上是有效的。我们还采用了Ruskey等人的经典算法和Barnes和Savage的经典算法,得到了关于给定长度n的强制双连通图度序列和给定偶数n的强制双连通图分区的一些枚举结果。基于这些枚举结果,我们做出了一些猜想,如:当n较大时,(1)长度为n的强制双连通图度序列占所有长度为n的零自由图度序列的比例渐近为常数C (0 < C < 1);(2)偶数n的强制双连通图分区占所有强制连通图分区的比例为
Forcibly-biconnected Graphical Degree Sequences: Decision Algorithms and Enumerative Results
We present an algorithm to test whether a given graphical degree sequence is forcibly biconnected. The worst case time complexity of the algorithm is shown to be exponential but it is still much better than the previous basic algorithm for this problem. We show through experimental evaluations that the algorithm is efficient on average. We also adapt the classic algorithm of Ruskey et al. and that of Barnes and Savage to obtain some enumerative results about forcibly biconnected graphical degree sequences of given length n and forcibly biconnected graphical partitions of given even integer n . Based on these enumerative results we make some conjectures such as: when n is large, (1) the proportion of forcibly biconnected graphical degree sequences of length n among all zero-free graphical degree sequences of length n is asymptotically a constant C (0 < C < 1); (2) the proportion of forcibly biconnected graphical partitions of even n among all forcibly connected graphical partitions of n is asymptotically 0.