利用废金属加工钢铁工件形成烧结粉末材料的结构特点

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING
E. Korosteleva, I. Nikolaev, V. Korzhova
{"title":"利用废金属加工钢铁工件形成烧结粉末材料的结构特点","authors":"E. Korosteleva, I. Nikolaev, V. Korzhova","doi":"10.17212/1994-6309-2022-24.4-192-205","DOIUrl":null,"url":null,"abstract":"Introduction. Manufacturing processes, to one degree or another, are associated with the metal waste production in the form of metal chips. The development of technologies for recycling of waste from mechanical facilities is a popular solution both from the resource saving and from an environmental points of view. Among many traditional approaches to the problem of recycling metal chips, the most interesting may be the method of using chips as one of the components in a powder material. The aim of this work is to analyze the possibility of using metalworking wastes from steel 45 (metal chips) in powder compositions based on titanium and aluminum not only as a source of iron, but also as a possible source of Fe2O3 oxide. Attention to the oxide was paid in terms of initiating reduction reactions in the powder mixture based on titanium and aluminum with the formation of the Al2O3 oxide phase to obtain a metal matrix composite. Research methods: steel chips after processing workpieces from steel 45 were additionally oxidized in water and crushed in a vibrating mill to an average particle size of 300 μm for use in powder compositions with titanium and aluminum powders. Grinded and oxidized chips were mixed with titanium and aluminum powders in various proportions in order to study its interaction with these powder components. The obtained mixtures were pressed in the form of cylindrical samples and sintered in a vacuum furnace at a temperature of 1,000 °C. The phase composition and microstructure were studied using an XRD-6000 X-ray diffractometer with CuKα – radiation and an AXIOVERT-200MAT optical microscope. Results and discussions. It is shown that after milling without coolant, steel 45 chips did not accumulate a noticeable amount of iron oxides, which required additional oxidizing procedures. The interaction of grinded oxidized chips with the components of powder mixtures is considered, and its effect on volumetric changes in compacts and structure formation of metal-matrix composites is shown. The results of optical metallography and X-ray diffraction analysis (XRD) of sintered powder compositions using oxidized ground chips of steel 45 made it possible to evaluate the ongoing processes of structure formation depending on the combination of interacting components, its mutual influence, and the prospects for obtaining composites with a dispersed oxide phase.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Features of the structure formation of sintered powder materials using waste metal processing of steel workpieces\",\"authors\":\"E. Korosteleva, I. Nikolaev, V. Korzhova\",\"doi\":\"10.17212/1994-6309-2022-24.4-192-205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Manufacturing processes, to one degree or another, are associated with the metal waste production in the form of metal chips. The development of technologies for recycling of waste from mechanical facilities is a popular solution both from the resource saving and from an environmental points of view. Among many traditional approaches to the problem of recycling metal chips, the most interesting may be the method of using chips as one of the components in a powder material. The aim of this work is to analyze the possibility of using metalworking wastes from steel 45 (metal chips) in powder compositions based on titanium and aluminum not only as a source of iron, but also as a possible source of Fe2O3 oxide. Attention to the oxide was paid in terms of initiating reduction reactions in the powder mixture based on titanium and aluminum with the formation of the Al2O3 oxide phase to obtain a metal matrix composite. Research methods: steel chips after processing workpieces from steel 45 were additionally oxidized in water and crushed in a vibrating mill to an average particle size of 300 μm for use in powder compositions with titanium and aluminum powders. Grinded and oxidized chips were mixed with titanium and aluminum powders in various proportions in order to study its interaction with these powder components. The obtained mixtures were pressed in the form of cylindrical samples and sintered in a vacuum furnace at a temperature of 1,000 °C. The phase composition and microstructure were studied using an XRD-6000 X-ray diffractometer with CuKα – radiation and an AXIOVERT-200MAT optical microscope. Results and discussions. It is shown that after milling without coolant, steel 45 chips did not accumulate a noticeable amount of iron oxides, which required additional oxidizing procedures. The interaction of grinded oxidized chips with the components of powder mixtures is considered, and its effect on volumetric changes in compacts and structure formation of metal-matrix composites is shown. The results of optical metallography and X-ray diffraction analysis (XRD) of sintered powder compositions using oxidized ground chips of steel 45 made it possible to evaluate the ongoing processes of structure formation depending on the combination of interacting components, its mutual influence, and the prospects for obtaining composites with a dispersed oxide phase.\",\"PeriodicalId\":42889,\"journal\":{\"name\":\"Obrabotka Metallov-Metal Working and Material Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obrabotka Metallov-Metal Working and Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1994-6309-2022-24.4-192-205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2022-24.4-192-205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

介绍。制造过程,在某种程度上,与金属屑形式的金属废料生产有关。从节约资源和环保的角度来看,发展回收机械设施废物的技术是一种流行的解决方案。在解决金属芯片回收问题的许多传统方法中,最有趣的可能是将芯片作为粉末材料的组成部分之一的方法。这项工作的目的是分析在钛和铝的粉末组合物中使用钢45(金属屑)的金属加工废料的可能性,不仅作为铁的来源,而且作为Fe2O3氧化物的可能来源。在以钛和铝为基础的粉末混合物中引发还原反应,形成Al2O3氧化相,从而获得金属基复合材料。研究方法:将45号钢加工后的钢屑在水中氧化后,在振动磨机中粉碎成平均粒径为300 μm的钢屑,与钛粉和铝粉混合制成粉末。将粉碎氧化后的薄片与不同比例的钛粉和铝粉混合,研究其与这些粉末组分的相互作用。将得到的混合物压制成圆柱形样品,在1000℃的真空炉中烧结。采用带CuKα辐射的XRD-6000型x射线衍射仪和AXIOVERT-200MAT光学显微镜对其相组成和微观结构进行了研究。结果和讨论。结果表明,在没有冷却剂的情况下铣削后,45号钢切屑没有积累明显数量的氧化铁,这需要额外的氧化程序。研究了氧化切屑与粉末混合物组分的相互作用,揭示了氧化切屑对压坯体积变化和金属基复合材料结构形成的影响。利用45钢的氧化磨屑对烧结粉末成分进行了光学金相和x射线衍射分析(XRD),从而可以根据相互作用组分的组合及其相互影响来评估正在进行的结构形成过程,以及获得具有分散氧化相的复合材料的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Features of the structure formation of sintered powder materials using waste metal processing of steel workpieces
Introduction. Manufacturing processes, to one degree or another, are associated with the metal waste production in the form of metal chips. The development of technologies for recycling of waste from mechanical facilities is a popular solution both from the resource saving and from an environmental points of view. Among many traditional approaches to the problem of recycling metal chips, the most interesting may be the method of using chips as one of the components in a powder material. The aim of this work is to analyze the possibility of using metalworking wastes from steel 45 (metal chips) in powder compositions based on titanium and aluminum not only as a source of iron, but also as a possible source of Fe2O3 oxide. Attention to the oxide was paid in terms of initiating reduction reactions in the powder mixture based on titanium and aluminum with the formation of the Al2O3 oxide phase to obtain a metal matrix composite. Research methods: steel chips after processing workpieces from steel 45 were additionally oxidized in water and crushed in a vibrating mill to an average particle size of 300 μm for use in powder compositions with titanium and aluminum powders. Grinded and oxidized chips were mixed with titanium and aluminum powders in various proportions in order to study its interaction with these powder components. The obtained mixtures were pressed in the form of cylindrical samples and sintered in a vacuum furnace at a temperature of 1,000 °C. The phase composition and microstructure were studied using an XRD-6000 X-ray diffractometer with CuKα – radiation and an AXIOVERT-200MAT optical microscope. Results and discussions. It is shown that after milling without coolant, steel 45 chips did not accumulate a noticeable amount of iron oxides, which required additional oxidizing procedures. The interaction of grinded oxidized chips with the components of powder mixtures is considered, and its effect on volumetric changes in compacts and structure formation of metal-matrix composites is shown. The results of optical metallography and X-ray diffraction analysis (XRD) of sintered powder compositions using oxidized ground chips of steel 45 made it possible to evaluate the ongoing processes of structure formation depending on the combination of interacting components, its mutual influence, and the prospects for obtaining composites with a dispersed oxide phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信