混合属性两阶段聚类实体解析

Lei Gang
{"title":"混合属性两阶段聚类实体解析","authors":"Lei Gang","doi":"10.17265/1548-7709/2015.06.003","DOIUrl":null,"url":null,"abstract":"Record matching and clustering are two essential steps in the process of entity resolution, and the single text similarity clustering based on tf-idf (term frequency-inverse document frequency) feature often leads to poor precision in spots entity resolution. The paper outlines a mixed attributes two-stage-clustering entity resolution framework (abbreviated in MATC-ER) and designs an approach to measure the similarity by mixing spot name and spot introduction, which makes good use of the record information at different stages. Then the paper proves its efficiency based on the comparative experiments on the real data of travel spots.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":"12 1","pages":"297-302"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Attributes Two-Stage-Clustering Entity Resolution\",\"authors\":\"Lei Gang\",\"doi\":\"10.17265/1548-7709/2015.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Record matching and clustering are two essential steps in the process of entity resolution, and the single text similarity clustering based on tf-idf (term frequency-inverse document frequency) feature often leads to poor precision in spots entity resolution. The paper outlines a mixed attributes two-stage-clustering entity resolution framework (abbreviated in MATC-ER) and designs an approach to measure the similarity by mixing spot name and spot introduction, which makes good use of the record information at different stages. Then the paper proves its efficiency based on the comparative experiments on the real data of travel spots.\",\"PeriodicalId\":69156,\"journal\":{\"name\":\"通讯和计算机:中英文版\",\"volume\":\"12 1\",\"pages\":\"297-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"通讯和计算机:中英文版\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.17265/1548-7709/2015.06.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2015.06.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

记录匹配和聚类是实体分辨过程中必不可少的两个步骤,基于tf-idf(词频-逆文档频率)特征的单一文本相似度聚类往往导致点实体分辨精度不高。本文提出了一种混合属性两阶段聚类实体解析框架(简称MATC-ER),设计了一种利用不同阶段记录信息,将点名和点介绍混合进行相似性度量的方法。通过对旅游景点真实数据的对比实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed Attributes Two-Stage-Clustering Entity Resolution
Record matching and clustering are two essential steps in the process of entity resolution, and the single text similarity clustering based on tf-idf (term frequency-inverse document frequency) feature often leads to poor precision in spots entity resolution. The paper outlines a mixed attributes two-stage-clustering entity resolution framework (abbreviated in MATC-ER) and designs an approach to measure the similarity by mixing spot name and spot introduction, which makes good use of the record information at different stages. Then the paper proves its efficiency based on the comparative experiments on the real data of travel spots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
843
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信