{"title":"对影响污水源热泵系统性能的运行参数和设计参数进行了理论分析","authors":"Ercan Dogan, İsmail Solmaz, Ö. Bayer","doi":"10.18186/thermal.1285281","DOIUrl":null,"url":null,"abstract":"Sewage wastewater heat exchanger (SWHE) has a significant role in the performance of sewage wastewater sourced heat pump (SWSHP) system as it provides to transfer the energy of wastewater to intermediary fluid or working fluid. Thus, a theoretical analysis of the SWSHP system was carried out to investigate the effects of SWHE design parameters on the system ’s performance. For this purpose, a simulation program based on the proposed mathematical model of the SWSHP system was developed in MATLAB. Afterward, the indirect type SWSHP system that can meet 50 kW heating load was theoretically designed. The influences of SW temperature, its mass flow rate, the inner diameter of the heat exchanger tube, and intermediary fluid mass flow rate on the performance of the designed SWSHP system were analyzed. The results indicate that variation of SW temperature affects the COPsys more than the variation of SW mass flow rate. Considering the ranges of parameters investigated, the COPsys raises from 2.56 to 4.51 and 2.89 to 4.27 with the variations of SW temperature and SW flow rate, respectively. Moreover, an increase in the intermediary fluid mass flow rate provides an improvement on the COPsys and COPunit. However, SWSHP performance is adversely affected by the increasing value of the inner diameter of the tubes. As a result, small changes in the design parameters of the SWHE directly affect the system performance and system operating conditions.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A theoretical analysis on the operating and design parameters affecting the performance of a sewage wastewater sourced heat pump system\",\"authors\":\"Ercan Dogan, İsmail Solmaz, Ö. Bayer\",\"doi\":\"10.18186/thermal.1285281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sewage wastewater heat exchanger (SWHE) has a significant role in the performance of sewage wastewater sourced heat pump (SWSHP) system as it provides to transfer the energy of wastewater to intermediary fluid or working fluid. Thus, a theoretical analysis of the SWSHP system was carried out to investigate the effects of SWHE design parameters on the system ’s performance. For this purpose, a simulation program based on the proposed mathematical model of the SWSHP system was developed in MATLAB. Afterward, the indirect type SWSHP system that can meet 50 kW heating load was theoretically designed. The influences of SW temperature, its mass flow rate, the inner diameter of the heat exchanger tube, and intermediary fluid mass flow rate on the performance of the designed SWSHP system were analyzed. The results indicate that variation of SW temperature affects the COPsys more than the variation of SW mass flow rate. Considering the ranges of parameters investigated, the COPsys raises from 2.56 to 4.51 and 2.89 to 4.27 with the variations of SW temperature and SW flow rate, respectively. Moreover, an increase in the intermediary fluid mass flow rate provides an improvement on the COPsys and COPunit. However, SWSHP performance is adversely affected by the increasing value of the inner diameter of the tubes. As a result, small changes in the design parameters of the SWHE directly affect the system performance and system operating conditions.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1285281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1285281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A theoretical analysis on the operating and design parameters affecting the performance of a sewage wastewater sourced heat pump system
Sewage wastewater heat exchanger (SWHE) has a significant role in the performance of sewage wastewater sourced heat pump (SWSHP) system as it provides to transfer the energy of wastewater to intermediary fluid or working fluid. Thus, a theoretical analysis of the SWSHP system was carried out to investigate the effects of SWHE design parameters on the system ’s performance. For this purpose, a simulation program based on the proposed mathematical model of the SWSHP system was developed in MATLAB. Afterward, the indirect type SWSHP system that can meet 50 kW heating load was theoretically designed. The influences of SW temperature, its mass flow rate, the inner diameter of the heat exchanger tube, and intermediary fluid mass flow rate on the performance of the designed SWSHP system were analyzed. The results indicate that variation of SW temperature affects the COPsys more than the variation of SW mass flow rate. Considering the ranges of parameters investigated, the COPsys raises from 2.56 to 4.51 and 2.89 to 4.27 with the variations of SW temperature and SW flow rate, respectively. Moreover, an increase in the intermediary fluid mass flow rate provides an improvement on the COPsys and COPunit. However, SWSHP performance is adversely affected by the increasing value of the inner diameter of the tubes. As a result, small changes in the design parameters of the SWHE directly affect the system performance and system operating conditions.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.