Ibrahim M. Al-Adwan, Ahmad Awwad, Mohamed S. Gaith, F. Alfaqs, Z. Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, M. A. Khatib, Mohammad Bsaileh, Abdalla A. Jaber, Ahmad Aqra’a
{"title":"带边缘裂纹的简支锥管输流体模态分析","authors":"Ibrahim M. Al-Adwan, Ahmad Awwad, Mohamed S. Gaith, F. Alfaqs, Z. Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, M. A. Khatib, Mohammad Bsaileh, Abdalla A. Jaber, Ahmad Aqra’a","doi":"10.18178/ijmerr.12.4.231-238","DOIUrl":null,"url":null,"abstract":"—The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail. The findings demonstrated that the presence of a fracture reduces the stiffness of the systems, resulting in a decrease in the basic natural frequencies. This loss is more pronounced when the fracture is further away from the nodal locations for each mode. Finally, it is demonstrated that increasing flow velocity reduces natural frequencies.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modal Analysis of Simply Supported Tapered Pipe Transporting Fluid with an Edge Crack Using Finite Element Method\",\"authors\":\"Ibrahim M. Al-Adwan, Ahmad Awwad, Mohamed S. Gaith, F. Alfaqs, Z. Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, M. A. Khatib, Mohammad Bsaileh, Abdalla A. Jaber, Ahmad Aqra’a\",\"doi\":\"10.18178/ijmerr.12.4.231-238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail. The findings demonstrated that the presence of a fracture reduces the stiffness of the systems, resulting in a decrease in the basic natural frequencies. This loss is more pronounced when the fracture is further away from the nodal locations for each mode. Finally, it is demonstrated that increasing flow velocity reduces natural frequencies.\",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.12.4.231-238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.12.4.231-238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Modal Analysis of Simply Supported Tapered Pipe Transporting Fluid with an Edge Crack Using Finite Element Method
—The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail. The findings demonstrated that the presence of a fracture reduces the stiffness of the systems, resulting in a decrease in the basic natural frequencies. This loss is more pronounced when the fracture is further away from the nodal locations for each mode. Finally, it is demonstrated that increasing flow velocity reduces natural frequencies.
期刊介绍:
International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.