G. Popov, V. Zubanov, E. Goriachkin, A. Scherban, A. Shvyrev
{"title":"现代民航GTE两级HPT数值模型验证","authors":"G. Popov, V. Zubanov, E. Goriachkin, A. Scherban, A. Shvyrev","doi":"10.18178/ijmerr.12.2.78-83","DOIUrl":null,"url":null,"abstract":"—The paper describes the results of the first step of the research team of the Department of Theory of Aircraft Engines to modernize the working process of a cooled axial two-stage high pressure turbine. The paper describes 2 numerical models of the turbine. The first one is with a small number of finite volumes. It is relatively accurate, but requires moderate computer resources to obtain results. The application of this model is planned for the optimisation process. The second one is with a large number of finite volumes. It is expected to have lower error rate and high computational cost. It will be used by the authors for verification calculations to check the found optimal variants and to choose the final variant. The created numerical models are verified by the available experimental data. The paper substantiates the choice of the number of finite volumes in the annular section of the blade passage, as well as their distribution along the blade height. It is shown that the integral parameters of the turbine obtained in the calculation lie in the scatter field of experimental data.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of a Numerical Model of a Two-Stage HPT of a Modern GTE for Civil Aviation\",\"authors\":\"G. Popov, V. Zubanov, E. Goriachkin, A. Scherban, A. Shvyrev\",\"doi\":\"10.18178/ijmerr.12.2.78-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—The paper describes the results of the first step of the research team of the Department of Theory of Aircraft Engines to modernize the working process of a cooled axial two-stage high pressure turbine. The paper describes 2 numerical models of the turbine. The first one is with a small number of finite volumes. It is relatively accurate, but requires moderate computer resources to obtain results. The application of this model is planned for the optimisation process. The second one is with a large number of finite volumes. It is expected to have lower error rate and high computational cost. It will be used by the authors for verification calculations to check the found optimal variants and to choose the final variant. The created numerical models are verified by the available experimental data. The paper substantiates the choice of the number of finite volumes in the annular section of the blade passage, as well as their distribution along the blade height. It is shown that the integral parameters of the turbine obtained in the calculation lie in the scatter field of experimental data.\",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.12.2.78-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.12.2.78-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Verification of a Numerical Model of a Two-Stage HPT of a Modern GTE for Civil Aviation
—The paper describes the results of the first step of the research team of the Department of Theory of Aircraft Engines to modernize the working process of a cooled axial two-stage high pressure turbine. The paper describes 2 numerical models of the turbine. The first one is with a small number of finite volumes. It is relatively accurate, but requires moderate computer resources to obtain results. The application of this model is planned for the optimisation process. The second one is with a large number of finite volumes. It is expected to have lower error rate and high computational cost. It will be used by the authors for verification calculations to check the found optimal variants and to choose the final variant. The created numerical models are verified by the available experimental data. The paper substantiates the choice of the number of finite volumes in the annular section of the blade passage, as well as their distribution along the blade height. It is shown that the integral parameters of the turbine obtained in the calculation lie in the scatter field of experimental data.
期刊介绍:
International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.