基于自适应MPC的车辆动态路径跟踪控制

Q3 Engineering
John M. Guirguis, S. Hammad, S. Maged
{"title":"基于自适应MPC的车辆动态路径跟踪控制","authors":"John M. Guirguis, S. Hammad, S. Maged","doi":"10.18178/ijmerr.11.7.535-541","DOIUrl":null,"url":null,"abstract":"In this paper, an adaptive Model Predictive Controller (MPC) is proposed as a solution for path tracking control problem for autonomous vehicles. The effect of feeding the MPC with a continuously changing vehicle’s mathematical model is studied, so that the controller becomes more adaptable to changing parameter values accompanied with instantaneous states. The proposed MPC is compared with both Stanley controller and a similar MPC that uses a fixed vehicle model. The performance is measured by the ability to minimize both lateral position and heading angle errors. A dynamic bicycle model for the vehicle is deployed in the MPC and the controllers are simulated in CarSimMATLAB/Simulink co-simulation environment using three common maneuvers: S-Road, double lane change and curved road. Results show that the proposed controller gives better tracking performance than the two others with minimal instantaneous and root mean square RMS errors.","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Path Tracking Control Based on an Adaptive MPC to Changing Vehicle Dynamics\",\"authors\":\"John M. Guirguis, S. Hammad, S. Maged\",\"doi\":\"10.18178/ijmerr.11.7.535-541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an adaptive Model Predictive Controller (MPC) is proposed as a solution for path tracking control problem for autonomous vehicles. The effect of feeding the MPC with a continuously changing vehicle’s mathematical model is studied, so that the controller becomes more adaptable to changing parameter values accompanied with instantaneous states. The proposed MPC is compared with both Stanley controller and a similar MPC that uses a fixed vehicle model. The performance is measured by the ability to minimize both lateral position and heading angle errors. A dynamic bicycle model for the vehicle is deployed in the MPC and the controllers are simulated in CarSimMATLAB/Simulink co-simulation environment using three common maneuvers: S-Road, double lane change and curved road. Results show that the proposed controller gives better tracking performance than the two others with minimal instantaneous and root mean square RMS errors.\",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.11.7.535-541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.11.7.535-541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

针对自动驾驶汽车的路径跟踪控制问题,提出了一种自适应模型预测控制器(MPC)。研究了用连续变化的车辆数学模型馈送MPC的效果,使控制器更能适应随瞬时状态变化的参数值。提出的MPC与斯坦利控制器和使用固定车辆模型的类似MPC进行了比较。性能是通过最小化横向位置和航向角度误差的能力来衡量的。在MPC中建立了车辆的动态自行车模型,并在CarSimMATLAB/Simulink联合仿真环境中对控制器进行了S-Road、双变道和弯道三种常见机动方式的仿真。结果表明,该控制器具有较好的跟踪性能,且瞬时误差和均方根误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Tracking Control Based on an Adaptive MPC to Changing Vehicle Dynamics
In this paper, an adaptive Model Predictive Controller (MPC) is proposed as a solution for path tracking control problem for autonomous vehicles. The effect of feeding the MPC with a continuously changing vehicle’s mathematical model is studied, so that the controller becomes more adaptable to changing parameter values accompanied with instantaneous states. The proposed MPC is compared with both Stanley controller and a similar MPC that uses a fixed vehicle model. The performance is measured by the ability to minimize both lateral position and heading angle errors. A dynamic bicycle model for the vehicle is deployed in the MPC and the controllers are simulated in CarSimMATLAB/Simulink co-simulation environment using three common maneuvers: S-Road, double lane change and curved road. Results show that the proposed controller gives better tracking performance than the two others with minimal instantaneous and root mean square RMS errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
25
期刊介绍: International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信