A. Purvee, Gunther C. Stehr, Battsengel Baatar, P. Batkhuu
{"title":"激光涂层泵件基本磨损及处理研究","authors":"A. Purvee, Gunther C. Stehr, Battsengel Baatar, P. Batkhuu","doi":"10.18178/ijmerr.11.3.166-173","DOIUrl":null,"url":null,"abstract":"This paper describes the technologies and results from a study to investigate a suitable means to protect high chromium white cast iron from further wear. This work focuses on the precondition for the feasibility testing of laser cladding with metal matrix composite powders for the wear protection of impeller blades of slurry pumps. Investigations of selected powder mixtures and different treatment parameter setups were conducted using test plates. During the process of laser cladding the pumps, factors affecting success included: the very raw surface quality of the blades; very high tolerances of the parts; possible defects within the cast iron substrate; and general weldability of the cast iron material due to chemical composition. In comparison between the part surfaces as cast and after the cleaning using sandblasting, the measurements show strong differences in the chemical composition. The measurement results are strongly dependent on the measurement position, surface condition, and laser power. Based on our results, an industrial trial was conducted to compare the wear behavior of the claddings with untreated high chromium white cast iron. An evaluation of the lifetime of the laser-coated pump parts in the mineral processing industry is underway, which results will be published separately. ","PeriodicalId":37784,"journal":{"name":"International Journal of Mechanical Engineering and Robotics Research","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fundamental Wear and Treatment Investigations of Laser-Coated Pump Parts\",\"authors\":\"A. Purvee, Gunther C. Stehr, Battsengel Baatar, P. Batkhuu\",\"doi\":\"10.18178/ijmerr.11.3.166-173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the technologies and results from a study to investigate a suitable means to protect high chromium white cast iron from further wear. This work focuses on the precondition for the feasibility testing of laser cladding with metal matrix composite powders for the wear protection of impeller blades of slurry pumps. Investigations of selected powder mixtures and different treatment parameter setups were conducted using test plates. During the process of laser cladding the pumps, factors affecting success included: the very raw surface quality of the blades; very high tolerances of the parts; possible defects within the cast iron substrate; and general weldability of the cast iron material due to chemical composition. In comparison between the part surfaces as cast and after the cleaning using sandblasting, the measurements show strong differences in the chemical composition. The measurement results are strongly dependent on the measurement position, surface condition, and laser power. Based on our results, an industrial trial was conducted to compare the wear behavior of the claddings with untreated high chromium white cast iron. An evaluation of the lifetime of the laser-coated pump parts in the mineral processing industry is underway, which results will be published separately. \",\"PeriodicalId\":37784,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Robotics Research\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Robotics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijmerr.11.3.166-173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijmerr.11.3.166-173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Fundamental Wear and Treatment Investigations of Laser-Coated Pump Parts
This paper describes the technologies and results from a study to investigate a suitable means to protect high chromium white cast iron from further wear. This work focuses on the precondition for the feasibility testing of laser cladding with metal matrix composite powders for the wear protection of impeller blades of slurry pumps. Investigations of selected powder mixtures and different treatment parameter setups were conducted using test plates. During the process of laser cladding the pumps, factors affecting success included: the very raw surface quality of the blades; very high tolerances of the parts; possible defects within the cast iron substrate; and general weldability of the cast iron material due to chemical composition. In comparison between the part surfaces as cast and after the cleaning using sandblasting, the measurements show strong differences in the chemical composition. The measurement results are strongly dependent on the measurement position, surface condition, and laser power. Based on our results, an industrial trial was conducted to compare the wear behavior of the claddings with untreated high chromium white cast iron. An evaluation of the lifetime of the laser-coated pump parts in the mineral processing industry is underway, which results will be published separately.
期刊介绍:
International Journal of Mechanical Engineering and Robotics Research. IJMERR is a scholarly peer-reviewed international scientific journal published bimonthly, focusing on theories, systems, methods, algorithms and applications in mechanical engineering and robotics. It provides a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Mechanical Engineering and Robotics Research.