从AADT估计平均速度的自校正模型

IF 0.4 4区 工程技术 Q4 ENGINEERING, CIVIL
M. Bruwer
{"title":"从AADT估计平均速度的自校正模型","authors":"M. Bruwer","doi":"10.17159/2309-8775/2021/v63n2a2","DOIUrl":null,"url":null,"abstract":"ABSTRACT Transport practitioners need a universally applicable speed prediction model to estimate average speeds on any road. Average annual speed is a key input to the economic assessment of transport infrastructure where reliable estimates of future average speeds are necessary to calculate economic costs and benefits. The relationship between Annual Average Daily Traffic (AADT) and average annual speed was investigated on higher-order roads across South Africa, revealing a high level of variability in this correlation at different locations. This variation is influenced by road characteristics, such as alignment and cross-section, complicating the formulation of a universal speed prediction model. Two novel speed prediction models are proposed in this article that use AADT to forecast future average annual speed. The speeds of heavy vehicles and light vehicles can be estimated separately, as well as the average speed of all vehicles simultaneously. Both models are self-calibrating, accounting for the variation in the AADT-speed relationship. This calibration step is unique to speed prediction models and increases the reliability of these models to estimate future average speeds considerably. Furthermore, self-calibrating average annual speed prediction models are universally applicable and will simplify economic assessment of transport infrastructure. Keywords: speed prediction, average annual speed, self-calibration, AADT, economic assessment","PeriodicalId":54762,"journal":{"name":"Journal of the South African Institution of Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A self-calibrating model to estimate average speed from AADT\",\"authors\":\"M. Bruwer\",\"doi\":\"10.17159/2309-8775/2021/v63n2a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Transport practitioners need a universally applicable speed prediction model to estimate average speeds on any road. Average annual speed is a key input to the economic assessment of transport infrastructure where reliable estimates of future average speeds are necessary to calculate economic costs and benefits. The relationship between Annual Average Daily Traffic (AADT) and average annual speed was investigated on higher-order roads across South Africa, revealing a high level of variability in this correlation at different locations. This variation is influenced by road characteristics, such as alignment and cross-section, complicating the formulation of a universal speed prediction model. Two novel speed prediction models are proposed in this article that use AADT to forecast future average annual speed. The speeds of heavy vehicles and light vehicles can be estimated separately, as well as the average speed of all vehicles simultaneously. Both models are self-calibrating, accounting for the variation in the AADT-speed relationship. This calibration step is unique to speed prediction models and increases the reliability of these models to estimate future average speeds considerably. Furthermore, self-calibrating average annual speed prediction models are universally applicable and will simplify economic assessment of transport infrastructure. Keywords: speed prediction, average annual speed, self-calibration, AADT, economic assessment\",\"PeriodicalId\":54762,\"journal\":{\"name\":\"Journal of the South African Institution of Civil Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the South African Institution of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17159/2309-8775/2021/v63n2a2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the South African Institution of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2309-8775/2021/v63n2a2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

交通从业者需要一个普遍适用的速度预测模型来估计任何道路上的平均速度。平均年速度是对交通基础设施进行经济评估的一个关键因素,对未来平均速度的可靠估计是计算经济成本和效益所必需的。在南非的高阶道路上调查了年平均每日交通量(AADT)和年平均速度之间的关系,揭示了这种相关性在不同地点的高度变化。这种变化受道路特征的影响,如路线和横截面,使通用速度预测模型的制定复杂化。本文提出了两种新的速度预测模型,利用AADT预测未来平均年速度。可以分别估计重型车辆和轻型车辆的速度,也可以同时估计所有车辆的平均速度。两个模型都是自校准的,说明了aadt -速度关系的变化。这一校准步骤是速度预测模型所独有的,并大大提高了这些模型估计未来平均速度的可靠性。此外,自校正年平均速度预测模型具有普遍适用性,可简化交通基础设施的经济评估。关键词:速度预测,年平均速度,自校正,AADT,经济评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A self-calibrating model to estimate average speed from AADT
ABSTRACT Transport practitioners need a universally applicable speed prediction model to estimate average speeds on any road. Average annual speed is a key input to the economic assessment of transport infrastructure where reliable estimates of future average speeds are necessary to calculate economic costs and benefits. The relationship between Annual Average Daily Traffic (AADT) and average annual speed was investigated on higher-order roads across South Africa, revealing a high level of variability in this correlation at different locations. This variation is influenced by road characteristics, such as alignment and cross-section, complicating the formulation of a universal speed prediction model. Two novel speed prediction models are proposed in this article that use AADT to forecast future average annual speed. The speeds of heavy vehicles and light vehicles can be estimated separately, as well as the average speed of all vehicles simultaneously. Both models are self-calibrating, accounting for the variation in the AADT-speed relationship. This calibration step is unique to speed prediction models and increases the reliability of these models to estimate future average speeds considerably. Furthermore, self-calibrating average annual speed prediction models are universally applicable and will simplify economic assessment of transport infrastructure. Keywords: speed prediction, average annual speed, self-calibration, AADT, economic assessment
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
25.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The Journal of the South African Institution of Civil Engineering publishes peer reviewed papers on all aspects of Civil Engineering relevant to Africa. It is an open access, ISI accredited journal, providing authoritative information not only on current developments, but also – through its back issues – giving access to data on established practices and the construction of existing infrastructure. It is published quarterly and is controlled by a Journal Editorial Panel. The forerunner of the South African Institution of Civil Engineering was established in 1903 as a learned society aiming to develop technology and to share knowledge for the development of the day. The minutes of the proceedings of the then Cape Society of Civil Engineers mainly contained technical papers presented at the Society''s meetings. Since then, and throughout its long history, during which time it has undergone several name changes, the organisation has continued to publish technical papers in its monthly publication (magazine), until 1993 when it created a separate journal for the publication of technical papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信