{"title":"新型镁基合金的电化学储氢、力学和热行为","authors":"Celal Kursun","doi":"10.1680/jemmr.22.00044","DOIUrl":null,"url":null,"abstract":"In this study, Mg65Ni25Y5B5 metallic glass by melt spinning technique was examined in terms of its electrochemical hydrogen storage characteristic, mechanical and thermal behaviors. The XRD and SEM results indicated that the alloy ribbon has a fully amorphous structure. The thermal behavior of the alloy ribbon was determined using flash differential scanning calorimetry (Flash DSC). According to Flash DSC results, the amorphous alloy ribbon exhibited distinct glass transition temperature (T g ) and wide supercooled liquid region (ΔT x = T x − T g ) before crystallization. Accordingly, T g and ΔT x are 195 °C and 63 °C, respectively. Mechanical behavior of the Mg-based alloy at room temperature was determined by means of Vickers microhardness (HV) tester. The microhardness value of the alloy ribbon was measured 336,8 HV. The discharge capacity of the Mg65Ni25Y5B5 alloy reached 313 mAhg−1. The cycle stability revealed that the alloy ribbon protected at least 76.7% of its initial discharge capacity at 12th charge-discharge cycle.","PeriodicalId":11537,"journal":{"name":"Emerging Materials Research","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrochemical hydrogen storage, mechanical and thermal behaviors of novel Mg-based alloy\",\"authors\":\"Celal Kursun\",\"doi\":\"10.1680/jemmr.22.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, Mg65Ni25Y5B5 metallic glass by melt spinning technique was examined in terms of its electrochemical hydrogen storage characteristic, mechanical and thermal behaviors. The XRD and SEM results indicated that the alloy ribbon has a fully amorphous structure. The thermal behavior of the alloy ribbon was determined using flash differential scanning calorimetry (Flash DSC). According to Flash DSC results, the amorphous alloy ribbon exhibited distinct glass transition temperature (T g ) and wide supercooled liquid region (ΔT x = T x − T g ) before crystallization. Accordingly, T g and ΔT x are 195 °C and 63 °C, respectively. Mechanical behavior of the Mg-based alloy at room temperature was determined by means of Vickers microhardness (HV) tester. The microhardness value of the alloy ribbon was measured 336,8 HV. The discharge capacity of the Mg65Ni25Y5B5 alloy reached 313 mAhg−1. The cycle stability revealed that the alloy ribbon protected at least 76.7% of its initial discharge capacity at 12th charge-discharge cycle.\",\"PeriodicalId\":11537,\"journal\":{\"name\":\"Emerging Materials Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jemmr.22.00044\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jemmr.22.00044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
研究了熔融纺丝法制备的Mg65Ni25Y5B5金属玻璃的电化学储氢特性、力学性能和热性能。XRD和SEM结果表明,合金带具有完全非晶结构。采用flash差示扫描量热法(flash DSC)测定了合金带的热行为。根据Flash DSC结果,非晶合金带在结晶前表现出明显的玻璃化转变温度(T g)和较宽的过冷液区(ΔT x = T x−T g)。因此,T g和ΔT x分别为195℃和63℃。采用维氏显微硬度计(HV)测定了镁基合金的室温力学行为。合金带的显微硬度值为336,8 HV。Mg65Ni25Y5B5合金的放电容量达到313 mAhg−1。循环稳定性分析表明,在第12次充放电循环时,合金带至少保护了76.7%的初始放电容量。
Electrochemical hydrogen storage, mechanical and thermal behaviors of novel Mg-based alloy
In this study, Mg65Ni25Y5B5 metallic glass by melt spinning technique was examined in terms of its electrochemical hydrogen storage characteristic, mechanical and thermal behaviors. The XRD and SEM results indicated that the alloy ribbon has a fully amorphous structure. The thermal behavior of the alloy ribbon was determined using flash differential scanning calorimetry (Flash DSC). According to Flash DSC results, the amorphous alloy ribbon exhibited distinct glass transition temperature (T g ) and wide supercooled liquid region (ΔT x = T x − T g ) before crystallization. Accordingly, T g and ΔT x are 195 °C and 63 °C, respectively. Mechanical behavior of the Mg-based alloy at room temperature was determined by means of Vickers microhardness (HV) tester. The microhardness value of the alloy ribbon was measured 336,8 HV. The discharge capacity of the Mg65Ni25Y5B5 alloy reached 313 mAhg−1. The cycle stability revealed that the alloy ribbon protected at least 76.7% of its initial discharge capacity at 12th charge-discharge cycle.
期刊介绍:
Materials Research is constantly evolving and correlations between process, structure, properties and performance which are application specific require expert understanding at the macro-, micro- and nano-scale. The ability to intelligently manipulate material properties and tailor them for desired applications is of constant interest and challenge within universities, national labs and industry.