约束投资组合优化问题的多目标进化元启发式方法

Q4 Decision Sciences
Massika Ikhlef, Méziane Aïder
{"title":"约束投资组合优化问题的多目标进化元启发式方法","authors":"Massika Ikhlef, Méziane Aïder","doi":"10.1590/0101-7438.2023.043.00266962","DOIUrl":null,"url":null,"abstract":". In this paper, we propose a multi-objective evolutionary metaheuristic approach based on the Pareto Ant Colony Optimization (P-ACO) metaheuristic and the non-dominated genetic sorting algorithms (NSGA II and NSGA III) to solve a bi-objective portfolio optimization problem. P-ACO is used to select the best assets composing the efficient portfolio. Then, NSGA II and NSGA III are separately used to find the proportional weights of the budget allocated to the selected portfolio. The results we obtained by these two algorithms were compared to designate the best performing algorithm. Finally, we performed another comparison between our results and those of an exact method used for the same problem. The numerical experiments performed on a set of instances from the literature revealed that the combination of the ant colony optimization metaheuristic and the NSGA III genetic algorithm that we proposed most often gave much better results than both the combination of the ant colony optimization metaheuristic and NSGA II on the one hand and the iterative approach on the other hand.","PeriodicalId":35341,"journal":{"name":"Pesquisa Operacional","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH TO THE CONSTRAINED PORTFOLIO OPTIMIZATION PROBLEM\",\"authors\":\"Massika Ikhlef, Méziane Aïder\",\"doi\":\"10.1590/0101-7438.2023.043.00266962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we propose a multi-objective evolutionary metaheuristic approach based on the Pareto Ant Colony Optimization (P-ACO) metaheuristic and the non-dominated genetic sorting algorithms (NSGA II and NSGA III) to solve a bi-objective portfolio optimization problem. P-ACO is used to select the best assets composing the efficient portfolio. Then, NSGA II and NSGA III are separately used to find the proportional weights of the budget allocated to the selected portfolio. The results we obtained by these two algorithms were compared to designate the best performing algorithm. Finally, we performed another comparison between our results and those of an exact method used for the same problem. The numerical experiments performed on a set of instances from the literature revealed that the combination of the ant colony optimization metaheuristic and the NSGA III genetic algorithm that we proposed most often gave much better results than both the combination of the ant colony optimization metaheuristic and NSGA II on the one hand and the iterative approach on the other hand.\",\"PeriodicalId\":35341,\"journal\":{\"name\":\"Pesquisa Operacional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquisa Operacional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0101-7438.2023.043.00266962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Operacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0101-7438.2023.043.00266962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
MULTIOBJECTIVE EVOLUTIONARY METAHEURISTIC APPROACH TO THE CONSTRAINED PORTFOLIO OPTIMIZATION PROBLEM
. In this paper, we propose a multi-objective evolutionary metaheuristic approach based on the Pareto Ant Colony Optimization (P-ACO) metaheuristic and the non-dominated genetic sorting algorithms (NSGA II and NSGA III) to solve a bi-objective portfolio optimization problem. P-ACO is used to select the best assets composing the efficient portfolio. Then, NSGA II and NSGA III are separately used to find the proportional weights of the budget allocated to the selected portfolio. The results we obtained by these two algorithms were compared to designate the best performing algorithm. Finally, we performed another comparison between our results and those of an exact method used for the same problem. The numerical experiments performed on a set of instances from the literature revealed that the combination of the ant colony optimization metaheuristic and the NSGA III genetic algorithm that we proposed most often gave much better results than both the combination of the ant colony optimization metaheuristic and NSGA II on the one hand and the iterative approach on the other hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pesquisa Operacional
Pesquisa Operacional Decision Sciences-Management Science and Operations Research
CiteScore
1.60
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: Pesquisa Operacional is published each semester by the Sociedade Brasileira de Pesquisa Operacional - SOBRAPO, performing one volume per year, and is distributed free of charge to its associates. The abbreviated title of the journal is Pesq. Oper., which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信