提出了一种新的飞机降落问题的建模方法,并给出了求解飞机降落问题的数学方法

Q4 Decision Sciences
Lorrany Cristina da Silva, Fernanda Yuka Ueno, M. Santos, A. Carvalho
{"title":"提出了一种新的飞机降落问题的建模方法,并给出了求解飞机降落问题的数学方法","authors":"Lorrany Cristina da Silva, Fernanda Yuka Ueno, M. Santos, A. Carvalho","doi":"10.1590/0101-7438.2023.043.00266290","DOIUrl":null,"url":null,"abstract":". Air traffic management has become increasingly complex due to the increasing use of air transport. One of the main management bottlenecks is planning the efficient use of runways for takeoff and landing. This paper aims to investigate the Aircraft Landing Problem, which seeks to minimize earliness and tardiness in aircraft landing time, assigning them to a runway to land and sequencing them. A new mathematical formulation based on Job Shop was proposed for the problem, comparing it with four mathematical formulations in the literature; three directly comparable and another containing a particularity that does not allow a direct comparison with the other formulations. Computational tests were performed on 49 instances of the literature using the Gurobi Optimizer optimization package. These mathematical formulations commonly used for the ALP present difficulties in finding the optimal solution when the number of aircraft to land is large, i.e., more than 50 aircraft. Therefore, we proposed a matheuristic to solve instances with a greater number of aircraft than the Gurobi Optimizer cannot solve optimally. This matheuristic first finds an initial solution using relax-and-fix (RF) and then fix-and-optimize (FO) improves the found solution. Comparisons were also made using the first feasible solution obtained by Gurobi and then was improved with FO. Among the matheuristic variations, the one that obtained the best result was the combination of RF with FO and this also showed efficiency in relation to the work in the literature that uses FO.","PeriodicalId":35341,"journal":{"name":"Pesquisa Operacional","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NEW MODELLING FOR THE AIRCRAFT LANDING PROBLEM AND MATHEURISTIC APPROACH TO SOLVE THE PROBLEM WITH A LARGE NUMBER OF AIRCRAFT\",\"authors\":\"Lorrany Cristina da Silva, Fernanda Yuka Ueno, M. Santos, A. Carvalho\",\"doi\":\"10.1590/0101-7438.2023.043.00266290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Air traffic management has become increasingly complex due to the increasing use of air transport. One of the main management bottlenecks is planning the efficient use of runways for takeoff and landing. This paper aims to investigate the Aircraft Landing Problem, which seeks to minimize earliness and tardiness in aircraft landing time, assigning them to a runway to land and sequencing them. A new mathematical formulation based on Job Shop was proposed for the problem, comparing it with four mathematical formulations in the literature; three directly comparable and another containing a particularity that does not allow a direct comparison with the other formulations. Computational tests were performed on 49 instances of the literature using the Gurobi Optimizer optimization package. These mathematical formulations commonly used for the ALP present difficulties in finding the optimal solution when the number of aircraft to land is large, i.e., more than 50 aircraft. Therefore, we proposed a matheuristic to solve instances with a greater number of aircraft than the Gurobi Optimizer cannot solve optimally. This matheuristic first finds an initial solution using relax-and-fix (RF) and then fix-and-optimize (FO) improves the found solution. Comparisons were also made using the first feasible solution obtained by Gurobi and then was improved with FO. Among the matheuristic variations, the one that obtained the best result was the combination of RF with FO and this also showed efficiency in relation to the work in the literature that uses FO.\",\"PeriodicalId\":35341,\"journal\":{\"name\":\"Pesquisa Operacional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesquisa Operacional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/0101-7438.2023.043.00266290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Operacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0101-7438.2023.043.00266290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NEW MODELLING FOR THE AIRCRAFT LANDING PROBLEM AND MATHEURISTIC APPROACH TO SOLVE THE PROBLEM WITH A LARGE NUMBER OF AIRCRAFT
. Air traffic management has become increasingly complex due to the increasing use of air transport. One of the main management bottlenecks is planning the efficient use of runways for takeoff and landing. This paper aims to investigate the Aircraft Landing Problem, which seeks to minimize earliness and tardiness in aircraft landing time, assigning them to a runway to land and sequencing them. A new mathematical formulation based on Job Shop was proposed for the problem, comparing it with four mathematical formulations in the literature; three directly comparable and another containing a particularity that does not allow a direct comparison with the other formulations. Computational tests were performed on 49 instances of the literature using the Gurobi Optimizer optimization package. These mathematical formulations commonly used for the ALP present difficulties in finding the optimal solution when the number of aircraft to land is large, i.e., more than 50 aircraft. Therefore, we proposed a matheuristic to solve instances with a greater number of aircraft than the Gurobi Optimizer cannot solve optimally. This matheuristic first finds an initial solution using relax-and-fix (RF) and then fix-and-optimize (FO) improves the found solution. Comparisons were also made using the first feasible solution obtained by Gurobi and then was improved with FO. Among the matheuristic variations, the one that obtained the best result was the combination of RF with FO and this also showed efficiency in relation to the work in the literature that uses FO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pesquisa Operacional
Pesquisa Operacional Decision Sciences-Management Science and Operations Research
CiteScore
1.60
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: Pesquisa Operacional is published each semester by the Sociedade Brasileira de Pesquisa Operacional - SOBRAPO, performing one volume per year, and is distributed free of charge to its associates. The abbreviated title of the journal is Pesq. Oper., which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信