Pt3Pd2、Pt2Pd3及其对应(111)表面原子分布的热力学

IF 0.8 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
K. Meerholz, D. Santos-Carballal, U. Terranova, A. Falch, C. G. van Sittert, N. D. de Leeuw
{"title":"Pt3Pd2、Pt2Pd3及其对应(111)表面原子分布的热力学","authors":"K. Meerholz, D. Santos-Carballal, U. Terranova, A. Falch, C. G. van Sittert, N. D. de Leeuw","doi":"10.17159/0379-4350/2021/v74a7","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen. Keywords: HyS process, platinum, palladium, solid-state, catalyst, Site-Occupation Disorder.","PeriodicalId":49495,"journal":{"name":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermodynamics of the Atomic Distribution in Pt3Pd2, Pt2Pd3 and their Corresponding (111) Surfaces\",\"authors\":\"K. Meerholz, D. Santos-Carballal, U. Terranova, A. Falch, C. G. van Sittert, N. D. de Leeuw\",\"doi\":\"10.17159/0379-4350/2021/v74a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen. Keywords: HyS process, platinum, palladium, solid-state, catalyst, Site-Occupation Disorder.\",\"PeriodicalId\":49495,\"journal\":{\"name\":\"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.17159/0379-4350/2021/v74a7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.17159/0379-4350/2021/v74a7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们建立了铂和钯双金属催化剂Pt3Pd2和Pt2Pd3的固态模型,并在800℃下进行了快速热退火。这些模型是通过确定2x2x1超级单体中所有独特的原子构型,使用位点占用障碍(SOD)程序构建的,并使用通用实用程序格程序(GULP)使用Sutton-Chen原子间电位进行优化。每种催化剂都有101个独特的体积模型,这些模型被发展成表面模型,这些模型是在确定表面能之前使用双区域表面技术构建的。选择表面能最低的平面和成分作为双金属催化剂表面结构的代表模型。这些有代表性的模型现在将用于氢生产的HyS过程的计算研究。关键词:HyS工艺,铂,钯,固态,催化剂,位点占用障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamics of the Atomic Distribution in Pt3Pd2, Pt2Pd3 and their Corresponding (111) Surfaces
ABSTRACT In this study, we have developed solid-state models of platinum and palladium bimetallic catalysts, Pt3Pd2 and Pt2Pd3, which are rapidly thermally annealed at 800 °C. These models were constructed by determining all the unique atomic configurations in a 2x2x1 supercell, using the program Site-Occupation Disorder (SOD), and optimized with the General Utility Lattice Program (GULP) using Sutton-Chen interatomic potentials. Each catalyst had 101 unique bulk models that were developed into surface models, which were constructed using the two-region surface technique before the surface energies were determined. The planes and compositions with lowest surface energies were chosen as the representative models for the surface structure of the bimetallic catalysts. These representative models will now be used in a computational study of the HyS process for the production of hydrogen. Keywords: HyS process, platinum, palladium, solid-state, catalyst, Site-Occupation Disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Original work in all branches of chemistry is published in the South African Journal of Chemistry. Contributions in English may take the form of papers, short communications, or critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信