一维自组织目标检测模型的指数吸引子

IF 0.7 4区 数学 Q2 MATHEMATICS
S. Iwasaki
{"title":"一维自组织目标检测模型的指数吸引子","authors":"S. Iwasaki","doi":"10.1619/FESI.62.75","DOIUrl":null,"url":null,"abstract":"Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.","PeriodicalId":55134,"journal":{"name":"Funkcialaj Ekvacioj-Serio Internacia","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exponential Attractor for One-Dimensional Self-Organizing Target-Detection Model\",\"authors\":\"S. Iwasaki\",\"doi\":\"10.1619/FESI.62.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.\",\"PeriodicalId\":55134,\"journal\":{\"name\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/FESI.62.75\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funkcialaj Ekvacioj-Serio Internacia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.62.75","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Okaie等人利用Keller-Segel模型对移动生物传感器网络进行目标跟踪。他们引入了一个数学公式并描述了数值结果。在本文中,我们将对他们的模型进行分析研究。首先构造模型方程的唯一局部解。其次,建立局部解的先验估计,得到全局解。最后,在构造一个非自治动力系统后,我们将证明指数吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential Attractor for One-Dimensional Self-Organizing Target-Detection Model
Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信