{"title":"一维自组织目标检测模型的指数吸引子","authors":"S. Iwasaki","doi":"10.1619/FESI.62.75","DOIUrl":null,"url":null,"abstract":"Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.","PeriodicalId":55134,"journal":{"name":"Funkcialaj Ekvacioj-Serio Internacia","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exponential Attractor for One-Dimensional Self-Organizing Target-Detection Model\",\"authors\":\"S. Iwasaki\",\"doi\":\"10.1619/FESI.62.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.\",\"PeriodicalId\":55134,\"journal\":{\"name\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Funkcialaj Ekvacioj-Serio Internacia\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/FESI.62.75\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Funkcialaj Ekvacioj-Serio Internacia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.62.75","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential Attractor for One-Dimensional Self-Organizing Target-Detection Model
Okaie et al. [8] utilized the Keller-Segel model for mobile bionanosensor networks for target tracking. They introduced a mathematical formulation and described numerical results. In this paper, we would like to study analytically their model. We first construct a unique local solution for model equations. Second, we establish a priori estimates for local solutions to obtain a global solution. Finally, after constructing a non-autonomous dynamical system, we will show existence of exponential attractors.