环状Stokes曲线Schrödinger方程的精确WKB分析

Pub Date : 2019-01-01 DOI:10.1619/FESI.62.1
T. Aoki, Kohei Iwaki, Toshinori Takahashi
{"title":"环状Stokes曲线Schrödinger方程的精确WKB分析","authors":"T. Aoki, Kohei Iwaki, Toshinori Takahashi","doi":"10.1619/FESI.62.1","DOIUrl":null,"url":null,"abstract":"Stokes phenomena with respect to a large parameter are investigated for Shrödinger-type ordinary di¤erential equations having a Stokes curve of loop-type. For this purpose, we employ a Bessel-type equation as a canonical form and compute the Voros coe‰cient of the equation. Combining the formula describing the Stokes automorphism for the Voros coe‰cient and the formal coordinate transformation connecting the Shrödinger-type equation and the Bessel-type equation, we have some formulas describing the action of alien derivatives and Stokes automorphism for WKB solutions of the Shrödinger-type equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1619/FESI.62.1","citationCount":"13","resultStr":"{\"title\":\"Exact WKB Analysis of Schrödinger Equations with a Stokes Curve of Loop Type\",\"authors\":\"T. Aoki, Kohei Iwaki, Toshinori Takahashi\",\"doi\":\"10.1619/FESI.62.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stokes phenomena with respect to a large parameter are investigated for Shrödinger-type ordinary di¤erential equations having a Stokes curve of loop-type. For this purpose, we employ a Bessel-type equation as a canonical form and compute the Voros coe‰cient of the equation. Combining the formula describing the Stokes automorphism for the Voros coe‰cient and the formal coordinate transformation connecting the Shrödinger-type equation and the Bessel-type equation, we have some formulas describing the action of alien derivatives and Stokes automorphism for WKB solutions of the Shrödinger-type equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1619/FESI.62.1\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/FESI.62.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.62.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了具有环型Stokes曲线的Shrödinger-type普通微分方程在大参数下的Stokes现象。为此,我们采用贝塞尔型方程作为标准形式,并计算该方程的Voros系数。结合描述Voros方程的Stokes自同构的公式和连接Shrödinger-type方程与bessel型方程的形式坐标变换,我们得到了描述Shrödinger-type方程WKB解的异导数和Stokes自同构作用的一些公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Exact WKB Analysis of Schrödinger Equations with a Stokes Curve of Loop Type
Stokes phenomena with respect to a large parameter are investigated for Shrödinger-type ordinary di¤erential equations having a Stokes curve of loop-type. For this purpose, we employ a Bessel-type equation as a canonical form and compute the Voros coe‰cient of the equation. Combining the formula describing the Stokes automorphism for the Voros coe‰cient and the formal coordinate transformation connecting the Shrödinger-type equation and the Bessel-type equation, we have some formulas describing the action of alien derivatives and Stokes automorphism for WKB solutions of the Shrödinger-type equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信