多键之字形纳米管Schrödinger算子光谱研究

Pub Date : 2019-01-01 DOI:10.1619/FESI.62.255
Hiroaki Niikuni
{"title":"多键之字形纳米管Schrödinger算子光谱研究","authors":"Hiroaki Niikuni","doi":"10.1619/FESI.62.255","DOIUrl":null,"url":null,"abstract":". In this paper, we study the spectral structure of periodic Schro¨dinger operators on a generalization of carbon nanotubes from the point of view of the quantum graphs. Since there exist chemical double bonds between carbon atoms on a hexagonal lattice with a cylindrical structure corresponding to carbon nanotubes, we study the spectral structure of periodic Schro¨dinger operators on zigzag nanotubes with multiple bonds of atoms in this paper. Utilizing the Floquet–Bloch theory, the spectrum of the operator consists of the absolutely continuous spectral bands and the flat band. We study the relationship between the number of the chemical bonds and the existence of spectral gaps.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1619/FESI.62.255","citationCount":"2","resultStr":"{\"title\":\"On the Spectra of Schrödinger Operators on Zigzag Nanotubes with Multiple Bonds\",\"authors\":\"Hiroaki Niikuni\",\"doi\":\"10.1619/FESI.62.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study the spectral structure of periodic Schro¨dinger operators on a generalization of carbon nanotubes from the point of view of the quantum graphs. Since there exist chemical double bonds between carbon atoms on a hexagonal lattice with a cylindrical structure corresponding to carbon nanotubes, we study the spectral structure of periodic Schro¨dinger operators on zigzag nanotubes with multiple bonds of atoms in this paper. Utilizing the Floquet–Bloch theory, the spectrum of the operator consists of the absolutely continuous spectral bands and the flat band. We study the relationship between the number of the chemical bonds and the existence of spectral gaps.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1619/FESI.62.255\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/FESI.62.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/FESI.62.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 本文从量子图的角度研究了碳纳米管推广上的周期薛定谔算子的谱结构。由于碳纳米管的六角形晶格上的碳原子之间存在化学双键,本文研究了具有多原子键的之字形纳米管上的周期薛定谔算子的光谱结构。利用Floquet-Bloch理论,算子的频谱由绝对连续的谱带和平坦的谱带组成。我们研究了化学键的数目与谱隙的存在之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Spectra of Schrödinger Operators on Zigzag Nanotubes with Multiple Bonds
. In this paper, we study the spectral structure of periodic Schro¨dinger operators on a generalization of carbon nanotubes from the point of view of the quantum graphs. Since there exist chemical double bonds between carbon atoms on a hexagonal lattice with a cylindrical structure corresponding to carbon nanotubes, we study the spectral structure of periodic Schro¨dinger operators on zigzag nanotubes with multiple bonds of atoms in this paper. Utilizing the Floquet–Bloch theory, the spectrum of the operator consists of the absolutely continuous spectral bands and the flat band. We study the relationship between the number of the chemical bonds and the existence of spectral gaps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信