具有时变阻尼和幂型非线性的波动方程寿命和爆破率的估计

Pub Date : 2016-09-05 DOI:10.1619/fesi.62.157
K. Fujiwara, M. Ikeda, Yuta Wakasugi
{"title":"具有时变阻尼和幂型非线性的波动方程寿命和爆破率的估计","authors":"K. Fujiwara, M. Ikeda, Yuta Wakasugi","doi":"10.1619/fesi.62.157","DOIUrl":null,"url":null,"abstract":"We study blow-up behavior of solutions for the Cauchy problem of the semilinear wave equation with time-dependent damping. When the damping is effective, and the nonlinearity is subcritical, we show the blow-up rates and the sharp lifespan estimates of solutions. Upper estimates are proved by an ODE argument, and lower estimates are given by a method of scaling variables.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1619/fesi.62.157","citationCount":"28","resultStr":"{\"title\":\"Estimates of Lifespan and Blow-up Rates for the Wave Equation with a Time-dependent Damping and a Power-type Nonlinearity\",\"authors\":\"K. Fujiwara, M. Ikeda, Yuta Wakasugi\",\"doi\":\"10.1619/fesi.62.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study blow-up behavior of solutions for the Cauchy problem of the semilinear wave equation with time-dependent damping. When the damping is effective, and the nonlinearity is subcritical, we show the blow-up rates and the sharp lifespan estimates of solutions. Upper estimates are proved by an ODE argument, and lower estimates are given by a method of scaling variables.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1619/fesi.62.157\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1619/fesi.62.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1619/fesi.62.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

研究了具有时变阻尼的半线性波动方程Cauchy问题解的爆破行为。当阻尼有效且非线性为亚临界时,我们给出了爆破率和解的尖锐寿命估计。上估计由一个ODE参数证明,下估计由一种缩放变量的方法给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Estimates of Lifespan and Blow-up Rates for the Wave Equation with a Time-dependent Damping and a Power-type Nonlinearity
We study blow-up behavior of solutions for the Cauchy problem of the semilinear wave equation with time-dependent damping. When the damping is effective, and the nonlinearity is subcritical, we show the blow-up rates and the sharp lifespan estimates of solutions. Upper estimates are proved by an ODE argument, and lower estimates are given by a method of scaling variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信