Evelio Astaiza, O. HéctorFabioBermudez, Luis Muñoz
{"title":"基于带宽策略与QoS满意度相关的频谱效率区域","authors":"Evelio Astaiza, O. HéctorFabioBermudez, Luis Muñoz","doi":"10.17230/INGCIENCIA.12.24.7","DOIUrl":null,"url":null,"abstract":"This paper presents the study results of the identification of the regions of spectral efficiency that satisfy the requirements of quality of service (QoS) based on restrictions of bandwidth based on IEEE 802.11 multicell. This problem is addressed from the perspective of game theory for the channeling defined in 802.11g, and considering only the nonoverlapping channels. To solve the game, the concepts of Nash Equilibrium (NE), Satisfaction Equilibrium (ES) and Efficient Satisfaction Equilibrium (ESE) are introduced, proposing an algorithm to identify regions of capacity that satisfy the QoS required by a user. Particularly, in this game, the solution that allows to guarantee the transfer information rate required by a network user while minimizing the required resources (bandwidth) is sought, allowing users to maximize the amount that can be associated to an AP on the network. In the present scenario, it is verified that the different Equilibrium NE, SE and ESE depend directly on the conditions of channel gain.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":"12 1","pages":"149-168"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regiones de Eficiencia Espectral Asociadas a Satisfacción de QoS Basadas en Estrategias de Ancho de Banda\",\"authors\":\"Evelio Astaiza, O. HéctorFabioBermudez, Luis Muñoz\",\"doi\":\"10.17230/INGCIENCIA.12.24.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the study results of the identification of the regions of spectral efficiency that satisfy the requirements of quality of service (QoS) based on restrictions of bandwidth based on IEEE 802.11 multicell. This problem is addressed from the perspective of game theory for the channeling defined in 802.11g, and considering only the nonoverlapping channels. To solve the game, the concepts of Nash Equilibrium (NE), Satisfaction Equilibrium (ES) and Efficient Satisfaction Equilibrium (ESE) are introduced, proposing an algorithm to identify regions of capacity that satisfy the QoS required by a user. Particularly, in this game, the solution that allows to guarantee the transfer information rate required by a network user while minimizing the required resources (bandwidth) is sought, allowing users to maximize the amount that can be associated to an AP on the network. In the present scenario, it is verified that the different Equilibrium NE, SE and ESE depend directly on the conditions of channel gain.\",\"PeriodicalId\":30405,\"journal\":{\"name\":\"Ingenieria y Ciencia\",\"volume\":\"12 1\",\"pages\":\"149-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenieria y Ciencia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17230/INGCIENCIA.12.24.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/INGCIENCIA.12.24.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regiones de Eficiencia Espectral Asociadas a Satisfacción de QoS Basadas en Estrategias de Ancho de Banda
This paper presents the study results of the identification of the regions of spectral efficiency that satisfy the requirements of quality of service (QoS) based on restrictions of bandwidth based on IEEE 802.11 multicell. This problem is addressed from the perspective of game theory for the channeling defined in 802.11g, and considering only the nonoverlapping channels. To solve the game, the concepts of Nash Equilibrium (NE), Satisfaction Equilibrium (ES) and Efficient Satisfaction Equilibrium (ESE) are introduced, proposing an algorithm to identify regions of capacity that satisfy the QoS required by a user. Particularly, in this game, the solution that allows to guarantee the transfer information rate required by a network user while minimizing the required resources (bandwidth) is sought, allowing users to maximize the amount that can be associated to an AP on the network. In the present scenario, it is verified that the different Equilibrium NE, SE and ESE depend directly on the conditions of channel gain.