{"title":"通过行波式吹风/吸力同时控制摩擦阻力减少和传热增加","authors":"K. Higashi, H. Mamori, K. Fukagata","doi":"10.1615/COMPUTTHERMALSCIEN.2011003213","DOIUrl":null,"url":null,"abstract":"The possibility of simultaneous control for skin-friction drag reduction and heat transfer augmentation by a traveling wave-like blowing/suction is explored for a laminar channel flow. In addition to the constant temperature difference condition, uniform heat generation is considered for the temperature field so that the boundary condition similar to that for the velocity field holds. Friction drag reduction and heat transfer augmentation are simultaneously achieved when the wave travels in the upstream direction. The global phases of streamwise velocity and temperature fluctuations are found to oppose each other, which eventually leads to dissimilarity between the friction drag and heat transfer. Direct numerical simulation (DNS) confirms that this dissimilar control effect can also be obtained in a turbulent channel flow.","PeriodicalId":45052,"journal":{"name":"Computational Thermal Sciences","volume":"3 1","pages":"521-530"},"PeriodicalIF":1.3000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"SIMULTANEOUS CONTROL OF FRICTION DRAG REDUCTION AND HEAT TRANSFER AUGMENTATION BY TRAVELING WAVE-LIKE BLOWING/SUCTION\",\"authors\":\"K. Higashi, H. Mamori, K. Fukagata\",\"doi\":\"10.1615/COMPUTTHERMALSCIEN.2011003213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility of simultaneous control for skin-friction drag reduction and heat transfer augmentation by a traveling wave-like blowing/suction is explored for a laminar channel flow. In addition to the constant temperature difference condition, uniform heat generation is considered for the temperature field so that the boundary condition similar to that for the velocity field holds. Friction drag reduction and heat transfer augmentation are simultaneously achieved when the wave travels in the upstream direction. The global phases of streamwise velocity and temperature fluctuations are found to oppose each other, which eventually leads to dissimilarity between the friction drag and heat transfer. Direct numerical simulation (DNS) confirms that this dissimilar control effect can also be obtained in a turbulent channel flow.\",\"PeriodicalId\":45052,\"journal\":{\"name\":\"Computational Thermal Sciences\",\"volume\":\"3 1\",\"pages\":\"521-530\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Thermal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/COMPUTTHERMALSCIEN.2011003213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/COMPUTTHERMALSCIEN.2011003213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
SIMULTANEOUS CONTROL OF FRICTION DRAG REDUCTION AND HEAT TRANSFER AUGMENTATION BY TRAVELING WAVE-LIKE BLOWING/SUCTION
The possibility of simultaneous control for skin-friction drag reduction and heat transfer augmentation by a traveling wave-like blowing/suction is explored for a laminar channel flow. In addition to the constant temperature difference condition, uniform heat generation is considered for the temperature field so that the boundary condition similar to that for the velocity field holds. Friction drag reduction and heat transfer augmentation are simultaneously achieved when the wave travels in the upstream direction. The global phases of streamwise velocity and temperature fluctuations are found to oppose each other, which eventually leads to dissimilarity between the friction drag and heat transfer. Direct numerical simulation (DNS) confirms that this dissimilar control effect can also be obtained in a turbulent channel flow.