petropolis (RJ)和pocos de Caldas (MG)最大降水贝叶斯模型

IF 0.4 4区 环境科学与生态学 Q4 WATER RESOURCES
Sandra Regina Vaz da Silva, Thales Rangel Ferreira, Fabricio Goecking Avelar, Gilberto Rodrigues Liska, J. Muniz, Luiz Alberto Beijo
{"title":"petropolis (RJ)和pocos de Caldas (MG)最大降水贝叶斯模型","authors":"Sandra Regina Vaz da Silva, Thales Rangel Ferreira, Fabricio Goecking Avelar, Gilberto Rodrigues Liska, J. Muniz, Luiz Alberto Beijo","doi":"10.1590/s1413-415220210342","DOIUrl":null,"url":null,"abstract":"Resumo As cidades de Petrópolis (RJ) e Poços de Caldas (MG) estão situadas em regiões serranas de seus respectivos estados e sofrem frequentemente com estragos provocados por fortes chuvas. Analisar e prever a ocorrência de precipitações máximas nessas localidades são fundamentais para o planejamento de atividades vulneráveis à sua ocorrência. A modelagem dessa variável é feita geralmente com distribuição generalizada de valores extremos (GEV), e a metodologia bayesiana tem apresentado bons resultados na estimação de seus parâmetros. Sendo assim, o presente estudo teve como objetivos ajustar a distribuição GEV às séries históricas de precipitação máxima de Petrópolis e Poços de Caldas e avaliar diferentes estruturas de distribuições a priori, informativas e não informativas, na predição da precipitação máxima esperada para diferentes tempos de retorno. Foram analisados o número de acertos e a precisão a fim de avaliar as previsões obtidas com as informações advindas das precipitações máximas de diferentes localidades para eliciação da distribuição a priori. A obtenção das distribuições marginais a posteriori foi realizada usando-se o método Monte Carlo via cadeias de Markov. A utilização da distribuição a priori informativa fundamentada nos dados de Poços de Caldas foi mais precisa e teve maior número de acertos para predizer as precipitações máximas para Petrópolis, enquanto para Poços de Caldas foi a priori informativa com base nas informações de São João da Boa Vista (SP). Para ambas as localidades, espera-se que, em um tempo médio de cinco anos, ocorra pelo menos um dia com precipitação máxima igual ou superior a 100 mm.","PeriodicalId":11619,"journal":{"name":"Engenharia Sanitaria E Ambiental","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelagem bayesiana da precipitação máxima de Petrópolis (RJ) e Poços de Caldas (MG)\",\"authors\":\"Sandra Regina Vaz da Silva, Thales Rangel Ferreira, Fabricio Goecking Avelar, Gilberto Rodrigues Liska, J. Muniz, Luiz Alberto Beijo\",\"doi\":\"10.1590/s1413-415220210342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resumo As cidades de Petrópolis (RJ) e Poços de Caldas (MG) estão situadas em regiões serranas de seus respectivos estados e sofrem frequentemente com estragos provocados por fortes chuvas. Analisar e prever a ocorrência de precipitações máximas nessas localidades são fundamentais para o planejamento de atividades vulneráveis à sua ocorrência. A modelagem dessa variável é feita geralmente com distribuição generalizada de valores extremos (GEV), e a metodologia bayesiana tem apresentado bons resultados na estimação de seus parâmetros. Sendo assim, o presente estudo teve como objetivos ajustar a distribuição GEV às séries históricas de precipitação máxima de Petrópolis e Poços de Caldas e avaliar diferentes estruturas de distribuições a priori, informativas e não informativas, na predição da precipitação máxima esperada para diferentes tempos de retorno. Foram analisados o número de acertos e a precisão a fim de avaliar as previsões obtidas com as informações advindas das precipitações máximas de diferentes localidades para eliciação da distribuição a priori. A obtenção das distribuições marginais a posteriori foi realizada usando-se o método Monte Carlo via cadeias de Markov. A utilização da distribuição a priori informativa fundamentada nos dados de Poços de Caldas foi mais precisa e teve maior número de acertos para predizer as precipitações máximas para Petrópolis, enquanto para Poços de Caldas foi a priori informativa com base nas informações de São João da Boa Vista (SP). Para ambas as localidades, espera-se que, em um tempo médio de cinco anos, ocorra pelo menos um dia com precipitação máxima igual ou superior a 100 mm.\",\"PeriodicalId\":11619,\"journal\":{\"name\":\"Engenharia Sanitaria E Ambiental\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engenharia Sanitaria E Ambiental\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1590/s1413-415220210342\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia Sanitaria E Ambiental","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1590/s1413-415220210342","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

petropolis (RJ)和pocos de Caldas (MG)城市位于各自州的山区,经常遭受暴雨造成的破坏。分析和预测这些地区最大降水的发生,对于规划易受其发生影响的活动至关重要。该变量的建模通常采用广义极值分布(GEV),贝叶斯方法在其参数估计方面取得了良好的结果。因此,本研究旨在调整petropolis和pocos de Caldas最大降水历史序列的GEV分布,并评估不同的先验分布结构,包括信息和非信息,以预测不同回归时间的最大预期降水。分析了命中次数和准确性,以评估从不同地点的最大降雨量获得的预测,以激发先验分布。采用马尔可夫链蒙特卡罗方法获得边际后验分布。使用基于pocos de Caldas数据的先验信息分布预测petropolis的最大降雨量更准确,有更多的成功,而pocos de Caldas的先验信息分布基于sao joao da Boa Vista (SP)的信息。对于这两个地区,预计在平均5年的时间里,至少有一天最大降雨量等于或大于100毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelagem bayesiana da precipitação máxima de Petrópolis (RJ) e Poços de Caldas (MG)
Resumo As cidades de Petrópolis (RJ) e Poços de Caldas (MG) estão situadas em regiões serranas de seus respectivos estados e sofrem frequentemente com estragos provocados por fortes chuvas. Analisar e prever a ocorrência de precipitações máximas nessas localidades são fundamentais para o planejamento de atividades vulneráveis à sua ocorrência. A modelagem dessa variável é feita geralmente com distribuição generalizada de valores extremos (GEV), e a metodologia bayesiana tem apresentado bons resultados na estimação de seus parâmetros. Sendo assim, o presente estudo teve como objetivos ajustar a distribuição GEV às séries históricas de precipitação máxima de Petrópolis e Poços de Caldas e avaliar diferentes estruturas de distribuições a priori, informativas e não informativas, na predição da precipitação máxima esperada para diferentes tempos de retorno. Foram analisados o número de acertos e a precisão a fim de avaliar as previsões obtidas com as informações advindas das precipitações máximas de diferentes localidades para eliciação da distribuição a priori. A obtenção das distribuições marginais a posteriori foi realizada usando-se o método Monte Carlo via cadeias de Markov. A utilização da distribuição a priori informativa fundamentada nos dados de Poços de Caldas foi mais precisa e teve maior número de acertos para predizer as precipitações máximas para Petrópolis, enquanto para Poços de Caldas foi a priori informativa com base nas informações de São João da Boa Vista (SP). Para ambas as localidades, espera-se que, em um tempo médio de cinco anos, ocorra pelo menos um dia com precipitação máxima igual ou superior a 100 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
101
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信