Darrieus与混合式水动力转子自启动性能比较评价

Q2 Engineering
G. Saini, A. De
{"title":"Darrieus与混合式水动力转子自启动性能比较评价","authors":"G. Saini, A. De","doi":"10.1615/interjenercleanenv.2022044132","DOIUrl":null,"url":null,"abstract":"Darrieus rotor is a promising technology for hydrokinetic and wind energy harvesting applications. However, the Darrieus rotor suffers from the problem of poor starting performance. The present research highlights solutions to improve the poor starting performance of the Darrieus rotor by introducing the hybrid rotor. Further, a comparative performance evaluation of conventional vertical axis Darrieus and hybrid rotors has been investigated numerically. The most widely used S-series S-1046 hydrofoil has been utilized by hybrid and Darrieus rotors. Further, two semicircular blades are used for the Savonius part of the hybrid rotor. The size of the Savonius part is optimized to obtain maximum performance from the hybrid rotor. Analyzing the flow field distributions across the turbine vicinity has highlighted various possible reasons. The study results have demonstrated that the hybrid rotor yields an exceptional increment of about 159.41% in the torque coefficient under low tip speed ratio (TSR) regimes (during initial starting) compared to the Darrieus rotor. However, due to the Savonius rotor's presence, the hybrid rotor's maximum power coefficient is reduced slightly compared to the maximum operating point of the Darrieus rotor. Further, the hybrid rotor yields a wider operating range than the single maximum operating point by the Darrieus rotor. The present investigations will assist the designers in selecting the site-specific hydrokinetic technology suitable for efficient and optimum use of hydrokinetic potential.","PeriodicalId":38729,"journal":{"name":"International Journal of Energy for a Clean Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Self-Starting Comparative Performance Evaluation of Darrieus and Hybrid Hydrokinetic Rotor\",\"authors\":\"G. Saini, A. De\",\"doi\":\"10.1615/interjenercleanenv.2022044132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Darrieus rotor is a promising technology for hydrokinetic and wind energy harvesting applications. However, the Darrieus rotor suffers from the problem of poor starting performance. The present research highlights solutions to improve the poor starting performance of the Darrieus rotor by introducing the hybrid rotor. Further, a comparative performance evaluation of conventional vertical axis Darrieus and hybrid rotors has been investigated numerically. The most widely used S-series S-1046 hydrofoil has been utilized by hybrid and Darrieus rotors. Further, two semicircular blades are used for the Savonius part of the hybrid rotor. The size of the Savonius part is optimized to obtain maximum performance from the hybrid rotor. Analyzing the flow field distributions across the turbine vicinity has highlighted various possible reasons. The study results have demonstrated that the hybrid rotor yields an exceptional increment of about 159.41% in the torque coefficient under low tip speed ratio (TSR) regimes (during initial starting) compared to the Darrieus rotor. However, due to the Savonius rotor's presence, the hybrid rotor's maximum power coefficient is reduced slightly compared to the maximum operating point of the Darrieus rotor. Further, the hybrid rotor yields a wider operating range than the single maximum operating point by the Darrieus rotor. The present investigations will assist the designers in selecting the site-specific hydrokinetic technology suitable for efficient and optimum use of hydrokinetic potential.\",\"PeriodicalId\":38729,\"journal\":{\"name\":\"International Journal of Energy for a Clean Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy for a Clean Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/interjenercleanenv.2022044132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy for a Clean Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interjenercleanenv.2022044132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

Darrieus转子是一种很有前途的水动力和风能收集技术。然而,Darrieus转子遭受的问题,较差的启动性能。本研究通过引入混合转子来解决Darrieus转子起动性能差的问题。在此基础上,对传统垂直轴Darrieus转子与混合转子的性能进行了数值比较。应用最广泛的s系列S-1046水翼已被混合式和达里厄斯转子所利用。此外,两个半圆形叶片用于混合转子的Savonius部分。Savonius部件的尺寸经过优化,以获得混合转子的最大性能。分析了涡轮附近的流场分布,突出了各种可能的原因。研究结果表明,在低叶尖速比(TSR)状态下(初始启动时),混合式转子的转矩系数比Darrieus转子高出159.41%。然而,由于Savonius转子的存在,混合转子的最大功率系数与Darrieus转子的最大工作点相比略有降低。此外,混合转子产生更宽的工作范围比单最大工作点由达里斯转子。目前的研究将有助于设计者选择适合于有效和最佳利用水动力势的特定地点的水动力技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Self-Starting Comparative Performance Evaluation of Darrieus and Hybrid Hydrokinetic Rotor
Darrieus rotor is a promising technology for hydrokinetic and wind energy harvesting applications. However, the Darrieus rotor suffers from the problem of poor starting performance. The present research highlights solutions to improve the poor starting performance of the Darrieus rotor by introducing the hybrid rotor. Further, a comparative performance evaluation of conventional vertical axis Darrieus and hybrid rotors has been investigated numerically. The most widely used S-series S-1046 hydrofoil has been utilized by hybrid and Darrieus rotors. Further, two semicircular blades are used for the Savonius part of the hybrid rotor. The size of the Savonius part is optimized to obtain maximum performance from the hybrid rotor. Analyzing the flow field distributions across the turbine vicinity has highlighted various possible reasons. The study results have demonstrated that the hybrid rotor yields an exceptional increment of about 159.41% in the torque coefficient under low tip speed ratio (TSR) regimes (during initial starting) compared to the Darrieus rotor. However, due to the Savonius rotor's presence, the hybrid rotor's maximum power coefficient is reduced slightly compared to the maximum operating point of the Darrieus rotor. Further, the hybrid rotor yields a wider operating range than the single maximum operating point by the Darrieus rotor. The present investigations will assist the designers in selecting the site-specific hydrokinetic technology suitable for efficient and optimum use of hydrokinetic potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy for a Clean Environment
International Journal of Energy for a Clean Environment Engineering-Automotive Engineering
CiteScore
3.30
自引率
0.00%
发文量
78
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信