整数子集的最优估计及其在GNSS中的应用

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS
A. Brack
{"title":"整数子集的最优估计及其在GNSS中的应用","authors":"A. Brack","doi":"10.1515/arsa-2016-0011","DOIUrl":null,"url":null,"abstract":"Abstract The problem of integer or mixed integer/real valued parameter estimation in linear models is considered. It is a well-known result that for zero-mean additive Gaussian measurement noise the integer least-squares estimator is optimal in the sense of maximizing the probability of correctly estimating the full vector of integer parameters. In applications such as global navigation satellite system ambiguity resolution, it can be beneficial to resolve only a subset of all integer parameters. We derive the estimator that leads to the highest possible success rate for a given integer subset and compare its performance to suboptimal integer mappings via numerical studies. Implementation aspects of the optimal estimator as well as subset selection criteria are discussed.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal Estimation of a Subset of Integers with Application to GNSS\",\"authors\":\"A. Brack\",\"doi\":\"10.1515/arsa-2016-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of integer or mixed integer/real valued parameter estimation in linear models is considered. It is a well-known result that for zero-mean additive Gaussian measurement noise the integer least-squares estimator is optimal in the sense of maximizing the probability of correctly estimating the full vector of integer parameters. In applications such as global navigation satellite system ambiguity resolution, it can be beneficial to resolve only a subset of all integer parameters. We derive the estimator that leads to the highest possible success rate for a given integer subset and compare its performance to suboptimal integer mappings via numerical studies. Implementation aspects of the optimal estimator as well as subset selection criteria are discussed.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/arsa-2016-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/arsa-2016-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要研究线性模型中整数或混合整数/实值参数估计问题。众所周知,对于零均值加性高斯测量噪声,整数最小二乘估计量在正确估计整数参数全向量的概率最大化的意义上是最优的。在诸如全球卫星导航系统模糊度解决等应用中,只解决所有整数参数的一个子集可能是有益的。对于给定的整数子集,我们推导出导致最高可能成功率的估计器,并通过数值研究将其性能与次优整数映射进行比较。讨论了最优估计器的实现方面以及子集选择准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Estimation of a Subset of Integers with Application to GNSS
Abstract The problem of integer or mixed integer/real valued parameter estimation in linear models is considered. It is a well-known result that for zero-mean additive Gaussian measurement noise the integer least-squares estimator is optimal in the sense of maximizing the probability of correctly estimating the full vector of integer parameters. In applications such as global navigation satellite system ambiguity resolution, it can be beneficial to resolve only a subset of all integer parameters. We derive the estimator that leads to the highest possible success rate for a given integer subset and compare its performance to suboptimal integer mappings via numerical studies. Implementation aspects of the optimal estimator as well as subset selection criteria are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信