两种保守的多示踪有效半拉格朗日格式集成在一个光谱元素(气候)动力核心中的多处理器系统

IF 0.3 Q4 MATHEMATICS
C. Erath, M. Taylor, R. Nair
{"title":"两种保守的多示踪有效半拉格朗日格式集成在一个光谱元素(气候)动力核心中的多处理器系统","authors":"C. Erath, M. Taylor, R. Nair","doi":"10.1515/caim-2016-0023","DOIUrl":null,"url":null,"abstract":"Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"7 1","pages":"74 - 98"},"PeriodicalIF":0.3000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/caim-2016-0023","citationCount":"3","resultStr":"{\"title\":\"Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core\",\"authors\":\"C. Erath, M. Taylor, R. Nair\",\"doi\":\"10.1515/caim-2016-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"7 1\",\"pages\":\"74 - 98\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/caim-2016-0023\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2016-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2016-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在今天的大气数值模拟中,可扩展和高精度的数值方案特别令人感兴趣。为了解决这些问题,Galerkin格式,如谱元方法,在过去的十年中得到了更多的关注。它们还提供了其他最先进的功能,如改进的保护。然而,数百种示踪剂的示踪剂传输,例如在化学版本的社区大气模型中,仍然是性能瓶颈。因此,我们考虑了两个保守的半拉格朗日格式。两者都设计为多示踪剂效率,三阶精度,并允许显式欧拉公式显着更长的时间步长。我们解决了在立方球投影和并行计算机上出现的困难,并展示了我们的方法的高可扩展性。此外,我们将这两种方案用于动态核中被动示踪剂的输运,并将我们的结果与当前高阶方法建模环境中使用的光谱元素示踪剂输运平流进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core
Abstract In today’s atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信