{"title":"纳米热电层过冷效应的优化","authors":"I. Rivera, A. Figueroa, F. Vázquez","doi":"10.1515/caim-2016-0008","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we address the problem of optimization of the so called supercooling effect in thermoelectric nanoscaled layers. The effect arises when a short term electric pulse is applied to the layer. The analysis is based on constitutive equations of the Maxwell-Cattaneo type describing the time evolution of dissipative flows with the thermal and electric conductivities depending on the width of the layer. This introduces memory and nonlocal effects and consequently a wave-like behaviour of system’s temperature. We study the effects of the shape of the electric pulse on the maximum diminishing of temperature by applying pulses of the form ta with a a power going from 0 to 10. Pulses with a a fractionary number perform better for nanoscaled devices whereas those with a bigger than unity do it for microscaled ones. We also find that the supercooling effect is improved by a factor of 6.6 over long length scale devices in the best performances and that the elapsed supercooling time for the nanoscaled devices equals the best of the microscaled ones. We use the spectral methods of solution which assure a well representation of wave behaviour of heat and electric charge in short time scales given their spectral convergence.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"7 1","pages":"110 - 98"},"PeriodicalIF":0.3000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/caim-2016-0008","citationCount":"3","resultStr":"{\"title\":\"Optimization of supercooling effect in nanoscaled thermoelectric layers\",\"authors\":\"I. Rivera, A. Figueroa, F. Vázquez\",\"doi\":\"10.1515/caim-2016-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we address the problem of optimization of the so called supercooling effect in thermoelectric nanoscaled layers. The effect arises when a short term electric pulse is applied to the layer. The analysis is based on constitutive equations of the Maxwell-Cattaneo type describing the time evolution of dissipative flows with the thermal and electric conductivities depending on the width of the layer. This introduces memory and nonlocal effects and consequently a wave-like behaviour of system’s temperature. We study the effects of the shape of the electric pulse on the maximum diminishing of temperature by applying pulses of the form ta with a a power going from 0 to 10. Pulses with a a fractionary number perform better for nanoscaled devices whereas those with a bigger than unity do it for microscaled ones. We also find that the supercooling effect is improved by a factor of 6.6 over long length scale devices in the best performances and that the elapsed supercooling time for the nanoscaled devices equals the best of the microscaled ones. We use the spectral methods of solution which assure a well representation of wave behaviour of heat and electric charge in short time scales given their spectral convergence.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"7 1\",\"pages\":\"110 - 98\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/caim-2016-0008\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2016-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2016-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimization of supercooling effect in nanoscaled thermoelectric layers
Abstract In this paper we address the problem of optimization of the so called supercooling effect in thermoelectric nanoscaled layers. The effect arises when a short term electric pulse is applied to the layer. The analysis is based on constitutive equations of the Maxwell-Cattaneo type describing the time evolution of dissipative flows with the thermal and electric conductivities depending on the width of the layer. This introduces memory and nonlocal effects and consequently a wave-like behaviour of system’s temperature. We study the effects of the shape of the electric pulse on the maximum diminishing of temperature by applying pulses of the form ta with a a power going from 0 to 10. Pulses with a a fractionary number perform better for nanoscaled devices whereas those with a bigger than unity do it for microscaled ones. We also find that the supercooling effect is improved by a factor of 6.6 over long length scale devices in the best performances and that the elapsed supercooling time for the nanoscaled devices equals the best of the microscaled ones. We use the spectral methods of solution which assure a well representation of wave behaviour of heat and electric charge in short time scales given their spectral convergence.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.