基于分形维数的复合材料梁分层损伤识别算法

Q4 Engineering
A. Katunin, M. Zuba
{"title":"基于分形维数的复合材料梁分层损伤识别算法","authors":"A. Katunin, M. Zuba","doi":"10.1515/fas-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract Damage detection and identification is one of the most important tasks of proper operation of technical objects and structures. It is, therefore, essential to develop efficient and sensitive methods of early damage detection. Delamination is the type of damage occurring in laminated composites that is one of the most dangerous and most difficult to detect. In this paper, the computational study was performed on the numerical data of the modal shapes of laminated composite beams with simulated delaminations in order to detect them using a fractal dimension-based approach. The obtained results allowed for improvement of detection accuracy as compared to previously applied wavelet-based approach. An additional benefit was decreasing the computational time. Basing on the obtained results it is reasonable to consider the presented approach as a promising alternative to currently applied signal processing methods used for supporting non-destructive testing of structures.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2017 1","pages":"16 - 5"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of Delamination in Composite Beams using the Fractal Dimension-Based Damage Identification Algorithm\",\"authors\":\"A. Katunin, M. Zuba\",\"doi\":\"10.1515/fas-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Damage detection and identification is one of the most important tasks of proper operation of technical objects and structures. It is, therefore, essential to develop efficient and sensitive methods of early damage detection. Delamination is the type of damage occurring in laminated composites that is one of the most dangerous and most difficult to detect. In this paper, the computational study was performed on the numerical data of the modal shapes of laminated composite beams with simulated delaminations in order to detect them using a fractal dimension-based approach. The obtained results allowed for improvement of detection accuracy as compared to previously applied wavelet-based approach. An additional benefit was decreasing the computational time. Basing on the obtained results it is reasonable to consider the presented approach as a promising alternative to currently applied signal processing methods used for supporting non-destructive testing of structures.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":\"2017 1\",\"pages\":\"16 - 5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/fas-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/fas-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

摘要损伤检测与识别是保证技术对象和结构正常运行的重要任务之一。因此,开发高效、灵敏的早期损伤检测方法至关重要。分层是发生在层压复合材料中的一种最危险、最难以检测的损伤类型。本文利用分形维数方法对具有模拟分层的层合组合梁的模态振型数值数据进行了计算研究。与以前应用的基于小波的方法相比,所获得的结果允许提高检测精度。另一个好处是减少了计算时间。基于所获得的结果,有理由认为该方法是目前用于支持结构无损检测的信号处理方法的一种有希望的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Delamination in Composite Beams using the Fractal Dimension-Based Damage Identification Algorithm
Abstract Damage detection and identification is one of the most important tasks of proper operation of technical objects and structures. It is, therefore, essential to develop efficient and sensitive methods of early damage detection. Delamination is the type of damage occurring in laminated composites that is one of the most dangerous and most difficult to detect. In this paper, the computational study was performed on the numerical data of the modal shapes of laminated composite beams with simulated delaminations in order to detect them using a fractal dimension-based approach. The obtained results allowed for improvement of detection accuracy as compared to previously applied wavelet-based approach. An additional benefit was decreasing the computational time. Basing on the obtained results it is reasonable to consider the presented approach as a promising alternative to currently applied signal processing methods used for supporting non-destructive testing of structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信