选择铆钉和铆接说明的比较

Q4 Engineering
J. Kaniowski
{"title":"选择铆钉和铆接说明的比较","authors":"J. Kaniowski","doi":"10.1515/fas-2014-0004","DOIUrl":null,"url":null,"abstract":"Abstract Sheet metal parts are widely used in airframes. Most sheet metal parts used in aircraft assembly are joined using rivets. A number of riveting parameters directly influence fatigue properties of a structure. These include a rivet length, driven head diameter, tolerance of a rivet hole and a rivet shank diameter, and a protective layer among others. Unfavourable selection or change of these parameters can lead to stress concentrations and early crack nucleation. Crack growth can cause failure of a whole structure. The selection of the riveting process parameters is usually described in a company’s internal instruction (process specifications). Some parameters can be defined in an aircraft's technical specifications. Riveting instructions among other production documentation are part of a company's closely guarded know-how. The author obtained access to two riveting instructions used in Poland and three such documents used in western Europe. The author was permitted to publish the comparison of the parameters from these documents but he is not supposed to reveal any other information. For the reasons stated above, the following cryptonyms were used in the article: Poland-1, Poland-2, West-1, West-2 and West-3. The quality of a joint also depends on rivets parameters that are defined in rivets standards. For this reason, selected rivets defined in the Polish and Russian industry standards as well as western standards are compared in this paper. Tolerances of a rivet and a hole diameter, clearances between a rivet and a hole, rivet lengths anticipated for driven head formation as well as driven head dimensions are taken into account.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/fas-2014-0004","citationCount":"3","resultStr":"{\"title\":\"Comparison of Selected Rivet and Riveting Instructions\",\"authors\":\"J. Kaniowski\",\"doi\":\"10.1515/fas-2014-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sheet metal parts are widely used in airframes. Most sheet metal parts used in aircraft assembly are joined using rivets. A number of riveting parameters directly influence fatigue properties of a structure. These include a rivet length, driven head diameter, tolerance of a rivet hole and a rivet shank diameter, and a protective layer among others. Unfavourable selection or change of these parameters can lead to stress concentrations and early crack nucleation. Crack growth can cause failure of a whole structure. The selection of the riveting process parameters is usually described in a company’s internal instruction (process specifications). Some parameters can be defined in an aircraft's technical specifications. Riveting instructions among other production documentation are part of a company's closely guarded know-how. The author obtained access to two riveting instructions used in Poland and three such documents used in western Europe. The author was permitted to publish the comparison of the parameters from these documents but he is not supposed to reveal any other information. For the reasons stated above, the following cryptonyms were used in the article: Poland-1, Poland-2, West-1, West-2 and West-3. The quality of a joint also depends on rivets parameters that are defined in rivets standards. For this reason, selected rivets defined in the Polish and Russian industry standards as well as western standards are compared in this paper. Tolerances of a rivet and a hole diameter, clearances between a rivet and a hole, rivet lengths anticipated for driven head formation as well as driven head dimensions are taken into account.\",\"PeriodicalId\":37629,\"journal\":{\"name\":\"Fatigue of Aircraft Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/fas-2014-0004\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue of Aircraft Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/fas-2014-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/fas-2014-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

摘要钣金件在机体中应用广泛。飞机装配中使用的大多数钣金件都是用铆钉连接的。许多铆接参数直接影响结构的疲劳性能。这些包括铆钉长度,驱动头直径,铆钉孔和铆钉柄直径的公差,以及保护层等。这些参数的不当选择或改变会导致应力集中和早期裂纹形核。裂纹的扩展会导致整个结构的破坏。铆接工艺参数的选择通常在公司的内部说明书(工艺规范)中进行说明。一些参数可以在飞机的技术规格中定义。在其他生产文档中,引人入胜的说明是公司严格保护的专有技术的一部分。提交人获得了在波兰使用的两份铆接说明书和在西欧使用的三份此类文件。作者被允许发表这些文件中参数的比较,但他不应该透露任何其他资料。由于上述原因,本文使用了以下暗语:波兰-1、波兰-2、西方-1、西方-2和西方-3。连接的质量还取决于铆钉标准中定义的铆钉参数。为此,本文对波兰和俄罗斯工业标准以及西方标准中所定义的铆钉进行了比较。铆钉和孔直径的公差,铆钉和孔之间的间隙,驱动头形成的铆钉长度以及驱动头尺寸都要考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Selected Rivet and Riveting Instructions
Abstract Sheet metal parts are widely used in airframes. Most sheet metal parts used in aircraft assembly are joined using rivets. A number of riveting parameters directly influence fatigue properties of a structure. These include a rivet length, driven head diameter, tolerance of a rivet hole and a rivet shank diameter, and a protective layer among others. Unfavourable selection or change of these parameters can lead to stress concentrations and early crack nucleation. Crack growth can cause failure of a whole structure. The selection of the riveting process parameters is usually described in a company’s internal instruction (process specifications). Some parameters can be defined in an aircraft's technical specifications. Riveting instructions among other production documentation are part of a company's closely guarded know-how. The author obtained access to two riveting instructions used in Poland and three such documents used in western Europe. The author was permitted to publish the comparison of the parameters from these documents but he is not supposed to reveal any other information. For the reasons stated above, the following cryptonyms were used in the article: Poland-1, Poland-2, West-1, West-2 and West-3. The quality of a joint also depends on rivets parameters that are defined in rivets standards. For this reason, selected rivets defined in the Polish and Russian industry standards as well as western standards are compared in this paper. Tolerances of a rivet and a hole diameter, clearances between a rivet and a hole, rivet lengths anticipated for driven head formation as well as driven head dimensions are taken into account.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信