搜索最大和向量的验证数值计算

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Yukiko Uchino, K. Ozaki
{"title":"搜索最大和向量的验证数值计算","authors":"Yukiko Uchino, K. Ozaki","doi":"10.15748/JASSE.8.53","DOIUrl":null,"url":null,"abstract":". This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verified Numerical Computations for Searching for Vectors with the Maximum Sum\",\"authors\":\"Yukiko Uchino, K. Ozaki\",\"doi\":\"10.15748/JASSE.8.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.\",\"PeriodicalId\":41942,\"journal\":{\"name\":\"Journal of Advanced Simulation in Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Simulation in Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15748/JASSE.8.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/JASSE.8.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

. 本文提出了一种求所有元素和最大的向量的数值方法。向量搜索可以应用于许多科学问题。如果我们使用数值计算而不考虑舍入误差,在最坏的情况下,我们可能会发现不正确的向量。在此,我们提出了一种基于浮点向量的无误差变换的自适应方法,该方法可以精确地工作,而不考虑舍入误差问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verified Numerical Computations for Searching for Vectors with the Maximum Sum
. This study proposes a numerical method for searching for vectors whose sum of all elements is maximum. The vector search can be applied to many scientific problems. If we use numerical computations without considering rounding errors, in a worst-case sce-nario, we might find incorrect vectors as a result. We propose herein an adaptive method designed to work accurately, regardless of the rounding error problems, based on an error-free transformation of a floating-point vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信