射频场诱导的放射致敏与代谢活性降低有关

Q3 Physics and Astronomy
Angela Chinhengo, A. Serafin, J. Akudugu
{"title":"射频场诱导的放射致敏与代谢活性降低有关","authors":"Angela Chinhengo, A. Serafin, J. Akudugu","doi":"10.1615/plasmamed.2020032850","DOIUrl":null,"url":null,"abstract":"Although radiofrequency fields (RFFs) have been found to exhibit both radiosensitizing (enhancement of radiation) and radioprotective (mitigation of radiation) effects, mechanisms underlying these phenomena have not been clearly elucidated. Here, we use four human cell lines, namely, MeWo and Be11 (melanomas), DU145 (prostate carcinoma), and L132 (normal lung fibroblasts), to assess the role of RFF modulation of cellular metabolic activity in altering radiosensitivity. We measure radiosensitivity and metabolic activity using colony-forming and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. Cell lines that are more radiosensitized by RFF exposure show larger reductions in metabolic activity, relative to radiation treatment alone, regardless of whether RFF exposure occurs before or after X-ray irradiation. The finding that surviving cells maintain elevated metabolic activity when treated with a combination of RFFs and X-rays suggests that changes in metabolic activity may be triggered by RFFs to support processes such as DNA repair and alteration of long-term cell survival. Modulation of cellular metabolic activity by RFFs may have important ramifications for moderating ionizing radiation–induced effects. This must be carefully considered if RFFs are to be applied as adjuvants in radiotherapy.","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1615/plasmamed.2020032850","citationCount":"0","resultStr":"{\"title\":\"Radiofrequency Field-Induced Radiosensitization Is Related to Reductions in Metabolic Activity\",\"authors\":\"Angela Chinhengo, A. Serafin, J. Akudugu\",\"doi\":\"10.1615/plasmamed.2020032850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although radiofrequency fields (RFFs) have been found to exhibit both radiosensitizing (enhancement of radiation) and radioprotective (mitigation of radiation) effects, mechanisms underlying these phenomena have not been clearly elucidated. Here, we use four human cell lines, namely, MeWo and Be11 (melanomas), DU145 (prostate carcinoma), and L132 (normal lung fibroblasts), to assess the role of RFF modulation of cellular metabolic activity in altering radiosensitivity. We measure radiosensitivity and metabolic activity using colony-forming and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. Cell lines that are more radiosensitized by RFF exposure show larger reductions in metabolic activity, relative to radiation treatment alone, regardless of whether RFF exposure occurs before or after X-ray irradiation. The finding that surviving cells maintain elevated metabolic activity when treated with a combination of RFFs and X-rays suggests that changes in metabolic activity may be triggered by RFFs to support processes such as DNA repair and alteration of long-term cell survival. Modulation of cellular metabolic activity by RFFs may have important ramifications for moderating ionizing radiation–induced effects. This must be carefully considered if RFFs are to be applied as adjuvants in radiotherapy.\",\"PeriodicalId\":53607,\"journal\":{\"name\":\"Plasma Medicine\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1615/plasmamed.2020032850\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/plasmamed.2020032850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/plasmamed.2020032850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

虽然已经发现射频场(rff)表现出辐射致敏(增强辐射)和辐射防护(减轻辐射)效应,但这些现象背后的机制尚未得到明确阐明。在这里,我们使用四种人类细胞系,即MeWo和Be11(黑色素瘤),DU145(前列腺癌)和L132(正常肺成纤维细胞),来评估RFF调节细胞代谢活性在改变放射敏感性中的作用。我们分别使用集落形成和3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑测定法测量辐射敏感性和代谢活性。与单独的放射治疗相比,受RFF辐射致敏程度更高的细胞系显示出更大的代谢活性降低,无论RFF暴露是发生在x射线照射之前还是之后。研究发现,当RFFs和x射线联合治疗时,存活的细胞保持较高的代谢活性,这表明RFFs可能触发代谢活性的变化,以支持DNA修复和改变长期细胞存活等过程。RFFs对细胞代谢活动的调节可能对调节电离辐射诱导的效应具有重要的影响。如果RFFs在放射治疗中用作佐剂,必须仔细考虑这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiofrequency Field-Induced Radiosensitization Is Related to Reductions in Metabolic Activity
Although radiofrequency fields (RFFs) have been found to exhibit both radiosensitizing (enhancement of radiation) and radioprotective (mitigation of radiation) effects, mechanisms underlying these phenomena have not been clearly elucidated. Here, we use four human cell lines, namely, MeWo and Be11 (melanomas), DU145 (prostate carcinoma), and L132 (normal lung fibroblasts), to assess the role of RFF modulation of cellular metabolic activity in altering radiosensitivity. We measure radiosensitivity and metabolic activity using colony-forming and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. Cell lines that are more radiosensitized by RFF exposure show larger reductions in metabolic activity, relative to radiation treatment alone, regardless of whether RFF exposure occurs before or after X-ray irradiation. The finding that surviving cells maintain elevated metabolic activity when treated with a combination of RFFs and X-rays suggests that changes in metabolic activity may be triggered by RFFs to support processes such as DNA repair and alteration of long-term cell survival. Modulation of cellular metabolic activity by RFFs may have important ramifications for moderating ionizing radiation–induced effects. This must be carefully considered if RFFs are to be applied as adjuvants in radiotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Medicine
Plasma Medicine Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍: Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信