Sarut Chaisrisawadisuk, D. Boonyawan, Apirag Chuangsuwanit
{"title":"低温等离子体选择性治疗人类黑色素瘤细胞的最佳功率","authors":"Sarut Chaisrisawadisuk, D. Boonyawan, Apirag Chuangsuwanit","doi":"10.1615/PLASMAMED.2019030124","DOIUrl":null,"url":null,"abstract":"The number of new cases of melanoma is increasing every year. ity of treatment, plasma medicine has been claimed to be a novel adjunctive procedure. We evalu-temperature plasma (LTP) device for selective tumor eradication, comparing between melanoma and normal keratinocyte cell lines. Human melanoma (G-361) and normal keratinocyte (HaCaT) cell lines were subjected to LTP treatment. levels and exposure durations of LTP were compared in both groups. After the treatment, a MTT assay was used to determine cell viability. The physical plasma characteristics of the three powers were also evaluated. It was found that low power (intensity 1 with frequency 10 Hz) was 0.25 watts, while medium power (intensity 5 with frequency 50 Hz) and high power (intensity 10, with frequency 100 Hz) were 0.94 and 3.0 watts, respectively. Higher powers and longer durations of LTP treatment increased the incidence of cell death in both the HaCaT and G-361 cell lines. LTP eliminated slightly more G-361 than HaCaT cells at 10 and 30 seconds of exposure. At 60 seconds or more, LTP showed a decrease of more than 50% in both the HaCaT and G-361 survival. Medium LTP power with 10between HaCaT and G-361 viabilities (77.1% and 66.3%, respectively; P = 0.01). LTP treatment at medium power (intensity 5 with frequency 50 Hz, equal to 0.94 watts) at 10-second duration .","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1615/PLASMAMED.2019030124","citationCount":"0","resultStr":"{\"title\":\"Optimum Power of Low-Temperature Plasma Selectivity for Human Melanoma Cell Treatment\",\"authors\":\"Sarut Chaisrisawadisuk, D. Boonyawan, Apirag Chuangsuwanit\",\"doi\":\"10.1615/PLASMAMED.2019030124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of new cases of melanoma is increasing every year. ity of treatment, plasma medicine has been claimed to be a novel adjunctive procedure. We evalu-temperature plasma (LTP) device for selective tumor eradication, comparing between melanoma and normal keratinocyte cell lines. Human melanoma (G-361) and normal keratinocyte (HaCaT) cell lines were subjected to LTP treatment. levels and exposure durations of LTP were compared in both groups. After the treatment, a MTT assay was used to determine cell viability. The physical plasma characteristics of the three powers were also evaluated. It was found that low power (intensity 1 with frequency 10 Hz) was 0.25 watts, while medium power (intensity 5 with frequency 50 Hz) and high power (intensity 10, with frequency 100 Hz) were 0.94 and 3.0 watts, respectively. Higher powers and longer durations of LTP treatment increased the incidence of cell death in both the HaCaT and G-361 cell lines. LTP eliminated slightly more G-361 than HaCaT cells at 10 and 30 seconds of exposure. At 60 seconds or more, LTP showed a decrease of more than 50% in both the HaCaT and G-361 survival. Medium LTP power with 10between HaCaT and G-361 viabilities (77.1% and 66.3%, respectively; P = 0.01). LTP treatment at medium power (intensity 5 with frequency 50 Hz, equal to 0.94 watts) at 10-second duration .\",\"PeriodicalId\":53607,\"journal\":{\"name\":\"Plasma Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1615/PLASMAMED.2019030124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/PLASMAMED.2019030124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/PLASMAMED.2019030124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Optimum Power of Low-Temperature Plasma Selectivity for Human Melanoma Cell Treatment
The number of new cases of melanoma is increasing every year. ity of treatment, plasma medicine has been claimed to be a novel adjunctive procedure. We evalu-temperature plasma (LTP) device for selective tumor eradication, comparing between melanoma and normal keratinocyte cell lines. Human melanoma (G-361) and normal keratinocyte (HaCaT) cell lines were subjected to LTP treatment. levels and exposure durations of LTP were compared in both groups. After the treatment, a MTT assay was used to determine cell viability. The physical plasma characteristics of the three powers were also evaluated. It was found that low power (intensity 1 with frequency 10 Hz) was 0.25 watts, while medium power (intensity 5 with frequency 50 Hz) and high power (intensity 10, with frequency 100 Hz) were 0.94 and 3.0 watts, respectively. Higher powers and longer durations of LTP treatment increased the incidence of cell death in both the HaCaT and G-361 cell lines. LTP eliminated slightly more G-361 than HaCaT cells at 10 and 30 seconds of exposure. At 60 seconds or more, LTP showed a decrease of more than 50% in both the HaCaT and G-361 survival. Medium LTP power with 10between HaCaT and G-361 viabilities (77.1% and 66.3%, respectively; P = 0.01). LTP treatment at medium power (intensity 5 with frequency 50 Hz, equal to 0.94 watts) at 10-second duration .
Plasma MedicinePhysics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍:
Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.