低温大气等离子体射流在医院表面净化中的潜在应用。一项初步研究

Q3 Physics and Astronomy
M. Fallon, Sarah Kennedy, Sharath Kumar, S. Daniels, H. Humphreys
{"title":"低温大气等离子体射流在医院表面净化中的潜在应用。一项初步研究","authors":"M. Fallon, Sarah Kennedy, Sharath Kumar, S. Daniels, H. Humphreys","doi":"10.1615/PLASMAMED.2021037267","DOIUrl":null,"url":null,"abstract":"Hospital surfaces are a source of potential infection due to contamination by microorganisms such as bacteria and viruses. Bacterial biofilms are of particular importance, due to their persistence in the hospital environment. Cold atmospheric pressure plasma (CAPP) is a novel potential method of hospital surface decontamination. In this study, we aimed to show the potential use of a CAPP jet for hospital decontamination. Bacterial biofilms were grown on common hospital surface materials and treated with an air-driven CAPP jet. Viable bacteria in treated biofilms were measured. Confocal microscopy and staining were used to gather images of CAPP-treated biofilms. The effect of CAPP inactivation was also assessed alongside the use of a detergent. CAPP inactivated clinically relevant bacteria both in planktonic and biofilm structures. A 90 s CAPP treatment led to an average of 82% decrease in Escherichia coli (E. coli) and 70% decrease in methicillin-resistant Staphylococcus aureus (MRSA) biofilm viability grown on polysterene. Confocal microscopy was used to confirm CAPP-induced inactivation of bacterial cells within mature growth on glass. CAPP treatment was also compared to treatment with detergent commonly used in hospitals. It was found that biofilm inactivation was greatest when treated with both detergent and CAPP. When in combination with detergent, viability of E. coli and MRSA biofilms grown on polysterene were decreased by 97% and 94%, respectively. A CAPP jet was shown to inactivate biofilms on hospital surfaces, particularly when used alongside detergent. This may suggest a role for CAPP in hospital decontamination.","PeriodicalId":53607,"journal":{"name":"Plasma Medicine","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Potential Use of a Cold Atmospheric Plasma Jet for Decontamination of Hospital Surfaces. A Pilot Study\",\"authors\":\"M. Fallon, Sarah Kennedy, Sharath Kumar, S. Daniels, H. Humphreys\",\"doi\":\"10.1615/PLASMAMED.2021037267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hospital surfaces are a source of potential infection due to contamination by microorganisms such as bacteria and viruses. Bacterial biofilms are of particular importance, due to their persistence in the hospital environment. Cold atmospheric pressure plasma (CAPP) is a novel potential method of hospital surface decontamination. In this study, we aimed to show the potential use of a CAPP jet for hospital decontamination. Bacterial biofilms were grown on common hospital surface materials and treated with an air-driven CAPP jet. Viable bacteria in treated biofilms were measured. Confocal microscopy and staining were used to gather images of CAPP-treated biofilms. The effect of CAPP inactivation was also assessed alongside the use of a detergent. CAPP inactivated clinically relevant bacteria both in planktonic and biofilm structures. A 90 s CAPP treatment led to an average of 82% decrease in Escherichia coli (E. coli) and 70% decrease in methicillin-resistant Staphylococcus aureus (MRSA) biofilm viability grown on polysterene. Confocal microscopy was used to confirm CAPP-induced inactivation of bacterial cells within mature growth on glass. CAPP treatment was also compared to treatment with detergent commonly used in hospitals. It was found that biofilm inactivation was greatest when treated with both detergent and CAPP. When in combination with detergent, viability of E. coli and MRSA biofilms grown on polysterene were decreased by 97% and 94%, respectively. A CAPP jet was shown to inactivate biofilms on hospital surfaces, particularly when used alongside detergent. This may suggest a role for CAPP in hospital decontamination.\",\"PeriodicalId\":53607,\"journal\":{\"name\":\"Plasma Medicine\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/PLASMAMED.2021037267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/PLASMAMED.2021037267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

由于细菌和病毒等微生物的污染,医院的表面是潜在的感染源。细菌生物膜特别重要,因为它们在医院环境中具有持久性。冷常压等离子体(CAPP)是一种有潜力的新型医院表面净化方法。在这项研究中,我们旨在展示CAPP射流在医院净化中的潜在用途。细菌生物膜生长在常见的医院表面材料和空气驱动的CAPP射流处理。测定处理后的生物膜中活菌。使用共聚焦显微镜和染色方法收集经capp处理的生物膜的图像。在使用洗涤剂的同时,还评估了CAPP失活的效果。CAPP灭活了浮游生物和生物膜结构中临床相关的细菌。90 s CAPP处理导致大肠杆菌(E. coli)平均下降82%,耐甲氧西林金黄色葡萄球菌(MRSA)在聚甾烯上生长的生物膜活力平均下降70%。用共聚焦显微镜证实了capp诱导的细菌细胞在玻璃上成熟生长的失活。并将CAPP治疗与医院常用洗涤剂治疗进行比较。结果表明,在去污剂和CAPP共同作用下,生物膜失活效果最大。当与洗涤剂联合使用时,大肠杆菌和MRSA生物膜的生存能力分别下降97%和94%。CAPP射流被证明可以灭活医院表面的生物膜,特别是当与洗涤剂一起使用时。这可能提示CAPP在医院净化中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Potential Use of a Cold Atmospheric Plasma Jet for Decontamination of Hospital Surfaces. A Pilot Study
Hospital surfaces are a source of potential infection due to contamination by microorganisms such as bacteria and viruses. Bacterial biofilms are of particular importance, due to their persistence in the hospital environment. Cold atmospheric pressure plasma (CAPP) is a novel potential method of hospital surface decontamination. In this study, we aimed to show the potential use of a CAPP jet for hospital decontamination. Bacterial biofilms were grown on common hospital surface materials and treated with an air-driven CAPP jet. Viable bacteria in treated biofilms were measured. Confocal microscopy and staining were used to gather images of CAPP-treated biofilms. The effect of CAPP inactivation was also assessed alongside the use of a detergent. CAPP inactivated clinically relevant bacteria both in planktonic and biofilm structures. A 90 s CAPP treatment led to an average of 82% decrease in Escherichia coli (E. coli) and 70% decrease in methicillin-resistant Staphylococcus aureus (MRSA) biofilm viability grown on polysterene. Confocal microscopy was used to confirm CAPP-induced inactivation of bacterial cells within mature growth on glass. CAPP treatment was also compared to treatment with detergent commonly used in hospitals. It was found that biofilm inactivation was greatest when treated with both detergent and CAPP. When in combination with detergent, viability of E. coli and MRSA biofilms grown on polysterene were decreased by 97% and 94%, respectively. A CAPP jet was shown to inactivate biofilms on hospital surfaces, particularly when used alongside detergent. This may suggest a role for CAPP in hospital decontamination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Medicine
Plasma Medicine Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.40
自引率
0.00%
发文量
14
期刊介绍: Technology has always played an important role in medicine and there are many journals today devoted to medical applications of ionizing radiation, lasers, ultrasound, magnetic resonance and others. Plasma technology is a relative newcomer to the field of medicine. Experimental work conducted at several major universities, research centers and companies around the world over the recent decade demonstrates that plasma can be used in variety of medical applications. It is already widely used surgeries and endoscopic procedures. It has been shown to control properties of cellular and tissue matrices, including biocompatibility of various substrates. Non-thermal plasma has been demonstrated to deactivate dangerous pathogens and to stop bleeding without damaging healthy tissue. It can be used to promote wound healing and to treat cancer. Understanding of various mechanisms by which plasma can interact with living systems, including effects of reactive oxygen species, reactive nitrogen species and charges, has begun to emerge recently. The aim of the Plasma Medicine journal will be to provide a forum where the above topics as well as topics closely related to them can be presented and discussed. Existing journals on plasma science and technology are aimed for audiences with primarily engineering and science background. The field of Plasma Medicine, on the other hand, is highly interdisciplinary. Some of prospective readers and contributors of the Plasma Medicine journal are expected to have background in medicine and biology. Others might be more familiar with plasma science. The goal of the proposed Plasma Medicine journal is to bridge the gap between audiences with such different backgrounds, without sacrificing the quality of the papers be their emphasis on medicine, biology or plasma science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信