基于各向异性全变分正则化的OCT图像NAS-RIF盲恢复方法

Q4 Engineering
Xuesong Fu, Jianlin Wang, Zhixiong Hu, Yongqi Guo, Kepeng Qiu, Rutong Wang
{"title":"基于各向异性全变分正则化的OCT图像NAS-RIF盲恢复方法","authors":"Xuesong Fu, Jianlin Wang, Zhixiong Hu, Yongqi Guo, Kepeng Qiu, Rutong Wang","doi":"10.15918/J.JBIT1004-0579.20014","DOIUrl":null,"url":null,"abstract":"Based on anisotropic total variation regularization (ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography (OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image. Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"29 1","pages":"146-157"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anisotropic Total Variation Regularization Based NAS-RIF Blind Restoration Method for OCT Image\",\"authors\":\"Xuesong Fu, Jianlin Wang, Zhixiong Hu, Yongqi Guo, Kepeng Qiu, Rutong Wang\",\"doi\":\"10.15918/J.JBIT1004-0579.20014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on anisotropic total variation regularization (ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography (OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image. Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"29 1\",\"pages\":\"146-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.20014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.20014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

为了提高光学相干层析成像(OCT)图像的质量,提出了一种基于各向异性全变差正则化(ATVR)的非负性支持约束递推反滤波(NAS-RIF)盲恢复方法。首先,将ATVR引入到NAS-RIF的代价函数中,提高噪声鲁棒性并保留图像中的细节;由于采用分裂Bregman迭代对基于ATVR的代价函数进行优化,因此构造了基于ATVR的NAS-RIF盲恢复方法。结合几何非线性扩散滤波和基于泊松分布的最小误差阈值分割,采用基于ATVR的NAS-RIF盲恢复方法实现了OCT图像的盲恢复。实验结果表明,基于ATVR的NAS-RIF盲恢复方法能够很好地保留OCT图像中的细节。此外,盲恢复OCT图像的信噪比可以得到提高,噪声的鲁棒性也得到提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic Total Variation Regularization Based NAS-RIF Blind Restoration Method for OCT Image
Based on anisotropic total variation regularization (ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography (OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image. Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
2437
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信