{"title":"三维双基地干涉ISAR成像","authors":"Lizhi Zhao, M. Martorella, Xiongjun Fu, M. Gao","doi":"10.15918/J.JBIT1004-0579.201524.0115","DOIUrl":null,"url":null,"abstract":"An approach based on interferometry technique is proposed for three-dimensional( 3D) bistatic inverse synthetic aperture radar( ISAR) imaging. It is converted to a monostatic problem by using the theory that a bistatic radar equals a monostatic radar located on the bisector of bistatic angle. Then,interferometric phases extracted from a pair of cross shaped antennas are used to estimate the height and associated rotational velocity.Finally,numerical simulations are provided to evaluate this method.","PeriodicalId":39252,"journal":{"name":"Journal of Beijing Institute of Technology (English Edition)","volume":"24 1","pages":"105-109"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-dimensional bistatic interferometric ISAR imaging\",\"authors\":\"Lizhi Zhao, M. Martorella, Xiongjun Fu, M. Gao\",\"doi\":\"10.15918/J.JBIT1004-0579.201524.0115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An approach based on interferometry technique is proposed for three-dimensional( 3D) bistatic inverse synthetic aperture radar( ISAR) imaging. It is converted to a monostatic problem by using the theory that a bistatic radar equals a monostatic radar located on the bisector of bistatic angle. Then,interferometric phases extracted from a pair of cross shaped antennas are used to estimate the height and associated rotational velocity.Finally,numerical simulations are provided to evaluate this method.\",\"PeriodicalId\":39252,\"journal\":{\"name\":\"Journal of Beijing Institute of Technology (English Edition)\",\"volume\":\"24 1\",\"pages\":\"105-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Beijing Institute of Technology (English Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15918/J.JBIT1004-0579.201524.0115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Beijing Institute of Technology (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15918/J.JBIT1004-0579.201524.0115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
An approach based on interferometry technique is proposed for three-dimensional( 3D) bistatic inverse synthetic aperture radar( ISAR) imaging. It is converted to a monostatic problem by using the theory that a bistatic radar equals a monostatic radar located on the bisector of bistatic angle. Then,interferometric phases extracted from a pair of cross shaped antennas are used to estimate the height and associated rotational velocity.Finally,numerical simulations are provided to evaluate this method.