Xin-ping Chen, Z. Cui, Xuejun Liu, P. Matson, I. Ortiz-Monasterio, G. Robertson, Fusuo Zhang
{"title":"气候变化引起的降水时间变化增加了集约化种植系统的氮损失:用玩具模型分析","authors":"Xin-ping Chen, Z. Cui, Xuejun Liu, P. Matson, I. Ortiz-Monasterio, G. Robertson, Fusuo Zhang","doi":"10.15302/j-fase-2022452","DOIUrl":null,"url":null,"abstract":"A simple model to how increasing temporal variability in precipitation yields are reduced and nitrogen losses are increased levels of precipitation variability. ABSTRACT A simple ‘toy’ model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted (and observed) to occur as a consequence of greenhouse-gas-induced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health. The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake. Also, increases in the temporal variation of precipitation increased the frequency of floods and droughts. Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.","PeriodicalId":12565,"journal":{"name":"Frontiers of Agricultural Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLIMATE-CHANGE-INDUCED TEMPORAL VARIATION IN PRECIPITATION INCREASES NITROGEN LOSSES FROM INTENSIVE CROPPING SYSTEMS: ANALYSIS WITH A TOY MODEL\",\"authors\":\"Xin-ping Chen, Z. Cui, Xuejun Liu, P. Matson, I. Ortiz-Monasterio, G. Robertson, Fusuo Zhang\",\"doi\":\"10.15302/j-fase-2022452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple model to how increasing temporal variability in precipitation yields are reduced and nitrogen losses are increased levels of precipitation variability. ABSTRACT A simple ‘toy’ model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted (and observed) to occur as a consequence of greenhouse-gas-induced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health. The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake. Also, increases in the temporal variation of precipitation increased the frequency of floods and droughts. Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.\",\"PeriodicalId\":12565,\"journal\":{\"name\":\"Frontiers of Agricultural Science and Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Agricultural Science and Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15302/j-fase-2022452\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Agricultural Science and Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15302/j-fase-2022452","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
CLIMATE-CHANGE-INDUCED TEMPORAL VARIATION IN PRECIPITATION INCREASES NITROGEN LOSSES FROM INTENSIVE CROPPING SYSTEMS: ANALYSIS WITH A TOY MODEL
A simple model to how increasing temporal variability in precipitation yields are reduced and nitrogen losses are increased levels of precipitation variability. ABSTRACT A simple ‘toy’ model of productivity and nitrogen and phosphorus cycling was used to evaluate how the increasing temporal variation in precipitation that is predicted (and observed) to occur as a consequence of greenhouse-gas-induced climate change will affect crop yields and losses of reactive N that can cause environmental damage and affect human health. The model predicted that as temporal variability in precipitation increased it progressively reduced yields and increased losses of reactive N by disrupting the synchrony between N supply and plant N uptake. Also, increases in the temporal variation of precipitation increased the frequency of floods and droughts. Predictions of this model indicate that climate-change-driven increases in temporal variation in precipitation in rainfed agricultural ecosystems will make it difficult to sustain cropping systems that are both high-yielding and have small environmental and human-health footprints.
期刊介绍:
Frontiers of Agricultural Science and Engineering (FASE) is an international journal for research on agricultural science and engineering. The journal’s aim is to report advanced and innovative scientific proceedings in agricultural field including Crop Science, Agricultural Biotechnology, Horticulture, Plant Protection, Agricultural Engineering, Forestry Engineering, Agricultural Resources, Animal Husbandry and Veterinary Medicine, Applied Ecology, Forestry and Fisheries. FASE is committed to provide a high level scientific and professional forum for researchers worldwide to publish their original findings and to utilize these novel findings to benefit the society.