{"title":"动态风险约束下的投资组合优化:连续与离散时间交易","authors":"I. Redeker, R. Wunderlich","doi":"10.1515/strm-2017-0001","DOIUrl":null,"url":null,"abstract":"Abstract We consider an investor facing a classical portfolio problem of optimal investment in a log-Brownian stock and a fixed-interest bond, but constrained to choose portfolio and consumption strategies that reduce a dynamic shortfall risk measure. For continuous- and discrete-time financial markets we investigate the loss in expected utility of intermediate consumption and terminal wealth caused by imposing a dynamic risk constraint. We derive the dynamic programming equations for the resulting stochastic optimal control problems and solve them numerically. Our numerical results indicate that the loss of portfolio performance is not too large while the risk is notably reduced. We then investigate time discretization effects and find that the loss of portfolio performance resulting from imposing a risk constraint is typically bigger than the loss resulting from infrequent trading.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/strm-2017-0001","citationCount":"4","resultStr":"{\"title\":\"Portfolio optimization under dynamic risk constraints: Continuous vs. discrete time trading\",\"authors\":\"I. Redeker, R. Wunderlich\",\"doi\":\"10.1515/strm-2017-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider an investor facing a classical portfolio problem of optimal investment in a log-Brownian stock and a fixed-interest bond, but constrained to choose portfolio and consumption strategies that reduce a dynamic shortfall risk measure. For continuous- and discrete-time financial markets we investigate the loss in expected utility of intermediate consumption and terminal wealth caused by imposing a dynamic risk constraint. We derive the dynamic programming equations for the resulting stochastic optimal control problems and solve them numerically. Our numerical results indicate that the loss of portfolio performance is not too large while the risk is notably reduced. We then investigate time discretization effects and find that the loss of portfolio performance resulting from imposing a risk constraint is typically bigger than the loss resulting from infrequent trading.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/strm-2017-0001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/strm-2017-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/strm-2017-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Portfolio optimization under dynamic risk constraints: Continuous vs. discrete time trading
Abstract We consider an investor facing a classical portfolio problem of optimal investment in a log-Brownian stock and a fixed-interest bond, but constrained to choose portfolio and consumption strategies that reduce a dynamic shortfall risk measure. For continuous- and discrete-time financial markets we investigate the loss in expected utility of intermediate consumption and terminal wealth caused by imposing a dynamic risk constraint. We derive the dynamic programming equations for the resulting stochastic optimal control problems and solve them numerically. Our numerical results indicate that the loss of portfolio performance is not too large while the risk is notably reduced. We then investigate time discretization effects and find that the loss of portfolio performance resulting from imposing a risk constraint is typically bigger than the loss resulting from infrequent trading.
期刊介绍:
Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.